Making Limits Exist Student Activity

Problem 1 – Linear Piecewise Function

Graph the piecewise function $f(x) = \begin{cases} a, x \ge 1 \\ 1, x < 1 \end{cases}$ where *a* is a constant.

Step 1: Press **y**= and enter the two equations you see at the right into your device. The inequality symbols can be found by pressing [2nd] [math]. Note that we have begun with an avalue of 5.

Note: To set the domain for piecewise functions, each piece must be entered into its own equation line and be divided by its restricted domain.

Step 2: Set the viewing window to standard by pressing zoom and selecting **ZStandard**.

Step 3: Press trace and use the left/right arrow keys to move along

move between the pieces.

the domain of each piece. Press the up/down arrows to

NORMAL FLOAT AUTO REAL RADIAN MP Plot1 Plot2 Plot3 NY185/(X≥1) ■**NY2**■1/(X<1) ∎****¥з= **\Y**4= NY 6 = ■****Y z= Y 8 = Y 9=

1. Graphically, what do the following one-sided limits appear to be?

$$f(x) = \begin{cases} 5, x \ge 1\\ 1, x < 1 \end{cases}$$

a. $\lim_{x\to 1^-} f(x) \approx$ _____

b. $\lim_{x\to 1^+} f(x) \approx$ _____

Name

Class

Making Limits Exist Student Activity

Name	
Class	

Step 4: Try other values for a in our piecewise function

 $f(x) = \begin{cases} a, x \ge 1\\ 1, x < 1 \end{cases}$ to determine what *a*-value makes $\lim_{x \to 1} f(x)$

exist. Remember, **Y1** is the function that has the *a*-value we are changing. In the screen to the right, *a* has been changed to 2. After changing the *a*-value, press graph to see the resulting changes in the graph. Try different values for *a*. Graph it to see if *f*(*x*) appears continuous.

Step 5: Check your answer numerically to determine if your *a*-value is correct. Set up the table by pressing 2nd window and changing the settings to those on the right.

Step 6: Now, press 2nd graph to view your table. Use the up and down arrows to move through the table. The table will show ERROR for any *x*-value that is not in the domain of the Y2 or Y2.

P
NORMAL FLOAT AUTO REAL RADIAN MP
Plot1 Plot2 Plot3
NY182/(X≥1)
■NY2目1/(X<1)
■NY3=
NY4=
■NY5=
■NY6=
■NY7=
■NY 8=
■ \ Y9=

NORMAL Press + F	FLOAT AL For at61	JTO REAL	RADIAN	MP	
X	Y1	Y2			Г
.5	ERROR	1			
.6	ERROR	1			
.7	ERROR	1			1
.8	ERROR	1			
.9	ERROR	1			1
1	1	ERROR			1
1.1	1	ERROR			1
1.2	1	ERROR			1
1.3	1	ERROR			1
1.4	1	ERROR			
1.5	1	ERROR			
X=.5					

2. After checking graphically and numerically, what value of a resulted in f(x) being continuous?

Problem 2 – Linear and Quadratic Piecewise Function

Repeat the steps from earlier for the function $g(x) = \begin{cases} a \cdot x^2, x \ge 1 \\ x + 2, x < 1 \end{cases}$ starting with an *a*-value of 5.

3. Graphically and numerically, what do the following one-sided limits appear to be?

$$g(x) = \begin{cases} 5 \cdot x^2, x \ge 1 \\ x + 2, x < 1 \end{cases}$$
 a. $\lim_{x \to T} g(x) \approx$

Making Limits Exist	Name
Student Activity	Class

4. a. After checking graphically and numerically, what value of *a* resulted in g(x) being continuous?

b. Show calculations of the left hand limit and the right hand limit to verify that your value for *a* makes the limit exist.

Problem 3 – Trigonometric Piecewise Function

Repeat the steps from earlier for the function
$$h(x) = \begin{cases} a + 3\sin\left((x-4)\frac{\pi}{2}\right), x \ge 2\\ 2\sin\left((x-1)\frac{\pi}{2}\right), x < 2 \end{cases}$$
 starting with an *a*-value of

r

/

5.

5. Graphically and numerically, what do the following one-sided limits appear to be?

$$h(x) = \begin{cases} 5 + 3\sin\left(\left(x - 4\right)\frac{\pi}{2}\right), & x \ge 2\\ 2\sin\left(\left(x - 1\right)\frac{\pi}{2}\right), & x < 2 \end{cases}$$

6. a. After checking graphically, and numerically, what value of a resulted in h(x) being continuous?

b. Show calculations of the left-hand limit and the right-hand limit to verify that your value for *a* makes the limit exist.