\qquad

Problem 1 - Linear Piecewise Function

Graph the piecewise function $f(x)=\left\{\begin{array}{l}a, x \geq 1 \\ 1, x<1\end{array}\right.$ where a is a constant.
Step 1: Press \boxed{y} and enter the two equations you see at the right into your device. The inequality symbols can be found by pressing 2 nd math. Note that we have begun with an avalue of 5 .

Step 3: Press trace and use the left/right arrow keys to move along the domain of each piece. Press the up/down arrows to move between the pieces.

1. Graphically, what do the following one-sided limits appear to be?
$f(x)=\left\{\begin{array}{l}5, x \geq 1 \\ 1, x<1\end{array}\right.$
a. $\lim _{x \rightarrow 1^{+}} f(x) \approx$ \qquad
b. $\lim _{x \rightarrow 1^{+}} f(x) \approx$ \qquad
\qquad

Step 4: Try other values for a in our piecewise function

Step 5: Check your answer numerically to determine if your a-value is correct. Set up the table by pressing [nd window and changing the settings to those on the right.

Step 6: Now, press 2nd graph to view your table. Use the up and down arrows to move through the table. The table will show ERROR for any x-value that is not in the domain of the $\mathbf{Y} 2$ or \mathbf{Y}.

2. After checking graphically and numerically, what value of a resulted in $f(x)$ being continuous?

Problem 2 - Linear and Quadratic Piecewise Function
Repeat the steps from earlier for the function $g(x)=\left\{\begin{array}{l}a \cdot x^{2}, x \geq 1 \\ x+2, x<1\end{array}\right.$ starting with an a-value of 5 .
3. Graphically and numerically, what do the following one-sided limits appear to be?
$g(x)=\left\{\begin{array}{l}5 \cdot x^{2}, x \geq 1 \\ x+2, x<1\end{array}\right.$
a. $\lim _{x \rightarrow 1^{-}} g(x) \approx$ \qquad
b. $\lim _{x \rightarrow+^{+}} g(x) \approx$ \qquad
\qquad
4. a. After checking graphically and numerically, what value of a resulted in $g(x)$ being continuous?
b. Show calculations of the left hand limit and the right hand limit to verify that your value for a makes the limit exist.

Problem 3 - Trigonometric Piecewise Function

Repeat the steps from earlier for the function $h(x)=\left\{\begin{array}{l}a+3 \sin \left((x-4) \frac{\pi}{2}\right), x \geq 2 \\ 2 \sin \left((x-1) \frac{\pi}{2}\right), \quad x<2\end{array}\right.$ starting with an a-value of
5.
5. Graphically and numerically, what do the following one-sided limits appear to be?
$h(x)= \begin{cases}5+3 \sin \left((x-4) \frac{\pi}{2}\right), & x \geq 2 \\ 2 \sin \left((x-1) \frac{\pi}{2}\right), & x<2\end{cases}$
6. a. After checking graphically, and numerically, what value of a resulted in $h(x)$ being continuous?
b. Show calculations of the left-hand limit and the right-hand limit to verify that your value for a makes the limit exist.

