Solutions for the Explorations

Chapter 1

Exploration 1-1a

1. Such a graph might look like this:

2. $d = 200t \cdot 2^{-t}$:

3.	t	d
	0	0.0°
	1	100.0°
	2	100.0°
	3	75.0°
	4	50.0°
	5	31.3°
	6	18.8°
	7	10.9°
	8	6.3°
	9	3.5°
	10	2.0°

- 4. Door appears to be opening. The graph of *d* shows that *d* was less than 100° before t = 1 s and greater than 100° after t = 1 s.
- 5. Average Rate = (change in value)/(Time)

 = (200(1.1) 2^{-1.1} 200(1) 2⁻¹)/(1.1 1)
 ≈ (102.6° 100°)/0.1 s

 = 26°/s

This number is greater than zero, which shows that the door is still opening because d is increasing.

- 6. Average rate for time interval [1, 1.01] ≈ 30°/s.
 Average rate for time interval [1, 1.001] ≈ 31°/s.
 Average rate for time interval [1, 1.0000001] ≈ 31°/s.
 The average rate seems to be approaching 30.68°/s ≈ 31°/s!
- 7. Answers will vary.
- 8. The example in Section 1-1 is the same as this Exploration!

Exploration 1-2a

1. a. $f(x) = 3^{-x}$:

- b. Grapher confirms sketch.
- c. Decreasing slowly
- 2. a. $f(x) = \sin \frac{\pi}{2} x$:

b. Grapher confirms sketch.c. Not changing