Solutions for the Explorations

Chapter 1

Exploration 1-1a

1. Such a graph might look like this:

2. $d=200 t \cdot 2^{-t}$:

3. | \boldsymbol{t} | \boldsymbol{d} |
| ---: | ---: |
| 0 | 0.0° |
| 1 | 100.0° |
| 2 | 100.0° |
| 3 | 75.0° |
| 4 | 50.0° |
| 5 | 31.3° |
| 6 | 18.8° |
| 7 | 10.9° |
| 8 | 6.3° |
| 9 | 3.5° |
| 10 | 2.0° |
4. Door appears to be opening. The graph of d shows that d was less than 100° before $t=1 \mathrm{~s}$ and greater than 100° after $t=1 \mathrm{~s}$.
5. Average Rate $=($ change in value $) /($ Time $)$

$$
\begin{aligned}
& =\left(200(1.1) \cdot 2^{-1.1}-200(1) \cdot 2^{-1}\right) /(1.1-1) \\
& \approx\left(102.6^{\circ}-100^{\circ}\right) / 0.1 \mathrm{~s} \\
& =26^{\circ} / \mathrm{s}
\end{aligned}
$$

This number is greater than zero, which shows that the door is still opening because d is increasing.
6. Average rate for time interval $[1,1.01] \approx 30^{\circ} / \mathrm{s}$. Average rate for time interval $[1,1.001] \approx 31^{\circ} / \mathrm{s}$. Average rate for time interval $[1,1.0000001] \approx 31^{\circ} / \mathrm{s}$.
The average rate seems to be approaching $30.68^{\circ} / \mathrm{s} \approx 31^{\circ} / \mathrm{s}$!
7. Answers will vary.
8. The example in Section 1-1 is the same as this Exploration!

Exploration 1-2a

1. a. $f(x)=3^{-x}$:

b. Grapher confirms sketch.
c. Decreasing slowly
2. a. $f(x)=\sin \frac{\pi}{2} x$:

b. Grapher confirms sketch.
c. Not changing
