ij.	Graphs of Linear Functions GraphLinearFunctions.tns
	GraphLinearFunctions.tns

Problem 1 – Slope-intercept form of a line

The graph of y = 3x - 4 is shown on page 1.3.

- What is the slope of the line?
- What is the *y*-intercept of the line?

The graph of $y = -\frac{1}{2}x + 3$ is shown on page 1.4.

- What is the slope of the line?
- What is the *y*-intercept of the line?
- Compare the two equations above to their respective slopes and *y*-intercepts. What do you notice?
- What is the standard slope-intercept form of a line?
- Sketch graphs of each of these equations on the grid to the right.
 - $y = \frac{1}{4}x + 5$ y = -2x - 1
 - \circ 5y = 4x + 10
- Now graph the equations on page 1.6.

Graphs of Linear Functions

Problem 2 – Parallel and perpendicular lines

On page 2.2, construct two lines parallel to the given line, one through point *A* and the other through point *B*. Measure the slopes of each, and rotate the original line.

• What is true about the slopes of the parallel lines?

Advance to page 2.3. Construct two lines perpendicular to the given line through points *A* and *B*. Again, measure their slopes, and then rotate the original line.

- What is true about the slopes of the perpendicular lines?
- On page 2.5, graph the line that passes through (0, -4) and is parallel to $y = -\frac{2}{3}x+1$. Then, graph the line that passes through (0, -4) and is perpendicular to $y = -\frac{2}{3}x+1$. Finally, graph the line that passes through (6, 2) and is parallel to $y = -\frac{2}{3}x+1$.
- Sketch graphs of each of these equations on the grid to the right.
 - the line passes through (0, 2) and is parallel to 3y - x = 15
 - the line passes through (3, 4) and is perpendicular to y = x + 6
 - the line has the same *y*-intercept as y + 6 = 2x and is perpendicular to y = -4x

Now graph the equations on page 2.6.

Extension

For the figure on page 3.2, find the coordinates of the vertices.

Use the coordinates of the vertices and the *Calculator* application to prove that the quadrilateral is a parallelogram, (both pairs of opposite sides are parallel).

Then prove that the quadrilateral is a rectangle, (has four right angles).