\qquad
Class \qquad
Problem 1 - Slope-intercept form of a line
The graph of $y=3 x-4$ is shown on page 1.3.

- What is the slope of the line? \qquad
- What is the y-intercept of the line? \qquad

The graph of $y=-\frac{1}{2} x+3$ is shown on page 1.4.

- What is the slope of the line? \qquad
- What is the y-intercept of the line? \qquad
- Compare the two equations above to their respective slopes and y-intercepts. What do you notice?
- What is the standard slope-intercept form of a line?
- Sketch graphs of each of these equations on the grid to the right.
- $y=\frac{1}{4} x+5$
- $y=-2 x-1$
- $5 y=4 x+10$

- Now graph the equations on page 1.6.

Graphs of Linear Functions

Problem 2 - Parallel and perpendicular lines

On page 2.2, construct two lines parallel to the given line, one through point A and the other through point B. Measure the slopes of each, and rotate the original line.

- What is true about the slopes of the parallel lines?

Advance to page 2.3. Construct two lines perpendicular to the given line through points A and B. Again, measure their slopes, and then rotate the original line.

- What is true about the slopes of the perpendicular lines?
- On page 2.5, graph the line that passes through $(0,-4)$ and is parallel to $y=-\frac{2}{3} x+1$. Then, graph the line that passes through $(0,-4)$ and is perpendicular to $y=-\frac{2}{3} x+1$. Finally, graph the line that passes through $(6,2)$ and is parallel to $y=-\frac{2}{3} x+1$.
- Sketch graphs of each of these equations on the grid to the right.
- the line passes through $(0,2)$ and is parallel to $3 y-x=15$
- the line passes through $(3,4)$ and is perpendicular to $y=x+6$
- the line has the same y-intercept as $y+6=2 x$ and is perpendicular to $y=-4 x$

Now graph the equations on page 2.6.

Extension

For the figure on page 3.2, find the coordinates of the vertices.
Use the coordinates of the vertices and the Calculator application to prove that the quadrilateral is a parallelogram, (both pairs of opposite sides are parallel).
Then prove that the quadrilateral is a rectangle, (has four right angles).

