\qquad
Class \qquad

Functions that are continuous and differentiable at a center can be approximated by polynomials. One such way of doing this is to generate a Maclaurin polynomial for a function.

An approximating polynomial is to be expanded about the center c which is in the domain of a function f. If this c has the same value in a polynomial P and function f then $P(c)=f(c)$. Graphically, $P(c)=f(c)$ means that the graph of P passes through the point $(c, f(c))$.

A Maclaurin polynomial is a polynomial that is based upon a function's derivatives at $c=0$.
Specifically, the nth Maclaurin polynomial is defined as

$$
\begin{gathered}
P_{n}(x)=\frac{f(0)}{0!} x^{0}+\frac{f^{\prime}(0)}{1!} x^{1}+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\ldots+\frac{f^{(n)}(0)}{n!} x^{n} \\
P_{n}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\ldots+\frac{f^{(n)}(0)}{n!} x^{n}
\end{gathered}
$$

Problem 1 - Maclaurin polynomial for $f(x)=\sin (x)$

In generating the third degree Maclaurin Polynomial for $f(x)=\sin (x)$, we compute

$$
\begin{aligned}
P_{3}(x) & =f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!}(x)^{2}+\frac{f^{\prime \prime \prime}(0)}{3!}(x)^{3} \\
f(0) & = \\
f^{\prime}(0) & = \\
f^{\prime \prime}(0) & = \\
f^{\prime \prime \prime}(0) & =
\end{aligned}
$$

Then substitute the values into the Maclaurin
 polynomial. This results in:

$$
P_{3}(x)=
$$

Click the arrows by the order and observe the graph.
What do you notice when the order is 1 and 2.
Why do you think this is true?

What do you notice when the order is 3 and 4.
Why do you think this is true?

Problem 2 - Maclaurin polynomial for $\boldsymbol{f}(\boldsymbol{x})=\mathbf{e}^{\mathrm{x}}$

1. Write $P_{1}(x), P_{2}(x)$, and $P_{3}(x)$ for $f(x)=e^{x}$.
2. Graph $f(x), P_{1}(x), P_{2}(x)$, and $P_{3}(x)$.

What do you notice?

Problem 3 - Maclaurin polynomial for $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{\operatorname { c o s }}(\boldsymbol{x})$

1. Find $P_{8}(x)$ for $f(x)=\cos (x)$.
2. What do you notice about the value of each derivative after 0 has been substituted?
3. What do you notice about this approximation?
4. Write two expressions to describe your findings in the previous question, when differentiating $\cos (x)$, in terms of n.
5. Graph $P_{8}(x)$ and $f(x)=\cos (x)$. What do you notice?
