$\qquad$

## Modeling Engine Power

Engine Speed vs. Engine Power
A manufacturer of a popular sports car states that the car reaches its maximum power (measured in horsepower, hp) at a lower engine speed (measured in revolutions per minute) than other comparable sports cars. The estimated values on which this claim was made are given in the table below.

| Engine speed (rpm) | 1000 | 2000 | 3000 | 4000 | 5000 | 6000 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Engine power (hp) | 18 | 37 | 58 | 73 | 77 | 67 |

Using your TI-Nspire handheld, complete the table using the directions given below:

| $x$ | Actual | Linear <br> Model | Deviation, $d$ | $d^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1000 | 18 |  |  |  |
| 2000 | 37 |  |  |  |
| 3000 | 58 |  |  |  |
| 4000 | 73 |  |  |  |
| 5000 | 77 |  |  | $\Sigma d^{2}=$ |
| 6000 | 67 |  |  |  |

- Enter the given data in a spreadsheet.

Label column A "rpm" and column B "hp".

- Find the least-squares regression line by choosing menu $\rightarrow$ 4:statistics $\rightarrow$ 1:stat calculations $\rightarrow$ 3:linear regression

| 1.1 |  |  | RAD AUTO REAL |  | $\square$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A rpm | B hp | C | D | E | F |
| - |  |  |  |  |  |
| 1 1000 | 18 |  |  |  |  |
| 22000 | 37 |  |  |  |  |
| $3 \quad 3000$ | 58 |  |  |  |  |
| 44000 | 77 |  |  |  |  |
| $5 \quad 5000$ | 78 |  |  |  | - |
| A1\| 1000 |  |  |  |  |  |

- Choose "rpm" for your X List, "hp" for your Y List, and Save RegEqn to "f1". Skip the rest and choose "OK". The linear regression statistics will now appear in your spreadsheet.
- Substitute the manufacturer's given rpm values to find the hp values based on the least-squares line. Do this by choosing menu $\rightarrow 5$ :function table $\rightarrow$ 1:switch to function table
- Find the vertical deviation $d$ between each data point and the least-squares line. Use the formula:

| 1.1 |  | RAD AUTO REAL | $\square$ |
| :---: | :---: | :---: | :---: |
| x | f1(x):.. $\mathbf{v}$ |  | v |
|  | . 011057. |  |  |
| 1. | 17.1444 |  | ล |
| 2. | 17.1554 |  |  |
| 3. | 17.1665 |  |  |
| 4. | 17.1776 |  |  |
| 5. | 17.1886 |  | - |
|  |  |  |  | $d$ = actual hp - least-squares hp

- Find the square of each deviation value, $d^{2}$, and then find the sum of the squares of the deviations, $\Sigma d^{2}$
- Fill in the appropriate values for the linear model, $d$, and $d^{2}$ in the table above.
- Return to the spreadsheet by choosing menu $\rightarrow 5$ :function table $\rightarrow 1$ :switch to lists and spreadsheets
- Graph a scatter plot of the data set. Choose home $\rightarrow$ 5:data \& statistics. Enter "rpm" and "hp" along the appropriate axes. Add the least-squares line by choosing menu $\rightarrow$ 3:actions $\rightarrow$ 5:regression $\rightarrow$ 1:show linear


Do the data points in the scatter plot suggest this is a linear relationship? $\qquad$
If not, what type of relationship do you think the scatter plot represents? $\qquad$

The data points appear to lie closer to a parabola than a straight line. Recall that the general equation for a parabola is: $y=a x^{2}+b x+c$

| $x$ | Actual | Quadratic <br> Model | Deviation, $d$ | $d^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1000 | 18 |  |  |  |
| 2000 | 37 |  |  |  |
| 3000 | 58 |  |  |  |
| 4000 | 73 |  |  |  |
| 5000 | 77 |  |  |  |
| 6000 | 67 |  |  |  |
|  |  |  |  |  |

Using your TI-Nspire handheld, find the quadratic regression for the set of data already listed in your spreadsheet.

- Find the least-squares parabola by choosing menu $\rightarrow 4$ :statistics $\rightarrow$ 1:stat calculations $\rightarrow$ 6:quadratic regression
- Choose "rpm" for your X List, "hp" for your Y List, and Save RegEqn to "f2". Skip the rest and choose "OK".
- Switch to the function table as before and enter f 2 in the column to the right of f 1 .
- Again, find the vertical deviation $d$ between each data point and the leastsquares parabola. Use the formula: $d$ = actual hp - least-squares hp

| 1.11 .2 |  |  | AUTO REAL $\square$ |
| :---: | :---: | :---: | :---: |
| X | $\mathrm{f} 1(\mathrm{x}): . . \mathrm{\nabla}$ | f2(x):.. ${ }^{\text {7 }}$ | V |
|  | . 011057. | -4.1071... |  |
| -1. | 17.1223 | -21.2398 | $\stackrel{\text { ה }}{ }$ |
| 0. | 17.1333 | -21.2 |  |
| 1. | 17.1444 | -21.1602 |  |
| 2. | 17.1554 | -21.1204 |  |
| 3. | 17.1665 | -21.0806 | - |
| $\mathrm{f2}(\mathrm{x}):=-4.1071428571427 \mathrm{E}-6^{*} \mathrm{x}^{\wedge} 2+.03980714285$ |  |  |  |

- Find the square of each deviation value, $d^{2}$, and then find the sum of the squares of the deviations, $\Sigma d^{2}$
- Fill in the appropriate values for the quadratic model, $d$, and $d^{2}$ in the table above.
- Return to the spreadsheet by choosing menu $\rightarrow 5$ :function table $\rightarrow 1$ :switch to lists and spreadsheets
- Return to the previous scatter plot of the data set. It is on the second page, 1.2. Add the least-squares parabola by choosing menu $\rightarrow$ 3: actions $\rightarrow$ 5:regression $\rightarrow$ 4:show quadratic

Based on the graphs of the linear model and the quadratic model, which model appears to be the best fit?

Compare the sum of squares of the deviations between each model. What does the sum of squares reveal about the model that fits the data the best?

