Shorter after 30

Domain (x) - Age	Process	Range (y) - centimeters shorter
n	$0.06(\mathrm{n}-30)$	$\mathrm{f}(\mathrm{n})$
35	$0.06(35-30)$	0.3 cm
42	$0.06(42-30)$	0.72 cm
57	$0.06(57-30)$	1.62 cm
61	$0.06(61-30)$	1.86 cm
83	$0.06(83-30)$	3.18 cm

I. This linear relationship is not proportional. Proportional relationships may be written in the form of $f(x)=k x$, where k is a constant.
Since this function is written $f(n)=0.06 n-1.8$, this is not a proportional relationship. The graph of a proportional relationship is a line graph that passes through the origin. This graph is a line graph, but does not pass through the origin. Therefore, the relationship is not proportional.

Lightning and Thunder

Domain (x) - Time in seconds	Process	Range (y) - Distance in feet
n	$1,110 \mathrm{n}$	$\mathrm{f}(\mathrm{n})$
2	$1,110(2)$	$2,220 \mathrm{ft}$
5	$1,110(5)$	$5,550 \mathrm{ft}$
11	$1,110(11)$	$12,210 \mathrm{ft}$
16	$1,110(16)$	$17,760 \mathrm{ft}$
19	$1,110(19)$	$21,090 \mathrm{ft}$

II. Since one mile equals 5 , 280 feet, we see that approximately 5 seconds will pass between the moment you see the lighting and the moment you hear the thunder. An exact answer would be found by dividing 5,280 feet by 1,110 , for a result of 4.76 seconds, or about $43 / 4$ seconds.

This linear relationship is proportional. Proportional relationships may be written in the form of $f(x)=k x$, where k is a constant.
Since this function is written $f(n)=1,110 n$, this is a proportional relationship with a constant (k) of 1,110 . The graph of a proportional relationship is a line graph that passes through the origin. This graph is a line graph, and passes through the origin. Therefore, the relationship is proportional.

Velocity versus Stopping Distance - sample data

Domain (x) - Velocity in MPH	Process	Range (y) - Stopping distance in feet
n	$3.48 \mathrm{n}-20$	$\mathrm{f}(\mathrm{n})$
30	$3.48(30)-20$	84.4 ft
50	$3.48(50)-20$	154 ft
60	$3.48(60)-20$	188.8 ft
70	$3.48(70)-20$	223.6 ft
80	$3.48(80)-20$	258.4 ft

III.

This linear relationship is not proportional. Proportional relationships may be written in the form of $f(x)=k x$, where k is a constant.
Since this function is written $f(n)=3.48 n-20$, this is not a proportional relationship. The graph of a proportional relationship is a line graph that passes through the origin. This graph is a line graph, but does not pass through the origin. Therefore, the relationship is not proportional

Height vs. Recommended Weight

Domain (x) - Height in inches	Process	Range (y) - Recommended weight in pounds (lbs)
h	$\frac{11(\mathrm{~h}-40)}{2}$	$\mathrm{f}(\mathrm{h})$
60 inches (5 feet)	$\frac{11(60-40)}{2}$	110 lbs.
64 inches	$\frac{11(64-40)}{2}$	132 lbs.
69 inches	$\frac{11(69-40)}{2}$	159.5 lbs.
72 inches (6 feet)	$\frac{11(72-40)}{2}$	176 lbs.
75 inches	$\frac{11(75-40)}{2}$	192.5 lbs.

IV.

This linear relationship is not proportional. Proportional relationships may be written in the form of $f(x)=k x$, where k is a constant.
Since this function is written $f(n)=5.5 h-20$, this is not a proportional relationship. The graph of a proportional relationship is a line graph that passes through the origin. This graph is a line graph, but does not pass through the origin. Therefore, the relationship is not proportional

