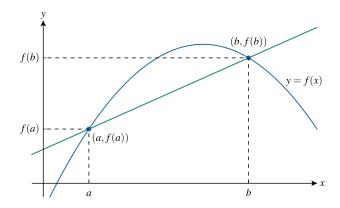
Thursday Night PreCalculus, November 30, 2023

Difference Quotients and Average Rates of Change

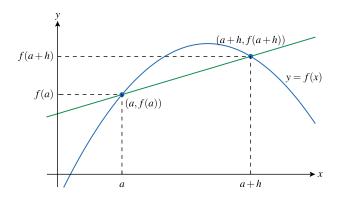
A Few Geometric Interpretations

Average rate of change: the change in y divided by the change in x.

Ave Rate of Change =
$$\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{f(b) - f(a)}{b - a}$$



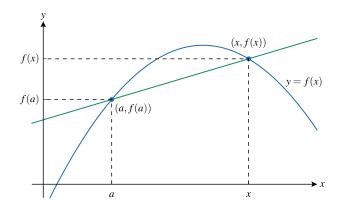
Difference Quotient: A measure of the average rate of change of a function over an interval of length h.



$$DQ = \frac{f(a+h) - f(a)}{(a+h) - a} = \frac{f(a+h) - f(a)}{h}$$

$$DQ = \frac{f(x+h) - f(x)}{h}$$

Another perspective:



$$DQ = \frac{f(x) - f(a)}{x - a}$$

Problems

1. For each of the following functions, simplify the expression

$$\frac{f(x+h) - f(x)}{h}, \qquad h \neq 0$$

as far as possible.

(a)
$$f(x) = 3x^2 - 5x$$

(b)
$$f(x) = \sqrt{x^2 - 1}$$

(c)
$$f(x) = \frac{1}{x^2}$$

$$(\mathbf{d}) \ f(x) = \frac{x}{1 + x^2}$$

2. The number of pounds (in millions) of lobster caught by Maine commercial fisherman is given by P(t), where t is measured in years. Selected values for P(t) are given in the table.

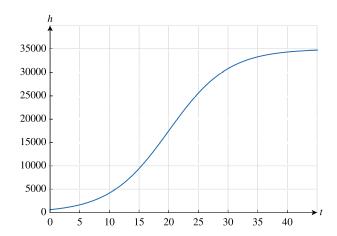
t	2010	2012	2014	2016	2018	2020	2022
P(t)	255.8	318.3	306.9	302.9	285.8	205.1	107.1

Find the average rate of change in pounds of lobsters caught (i) from 2016 to 2018; (ii) from 2018 to 2020.

Indicate the unites of measure. What does your answers suggest about the change in the number of pounds of lobster caught in recent years?

- **3.** A particle moves along a horizontal number line. Its position at time $t \ge 0$ is given by $s(t) = t^2 7t + 2$ where t is measured in seconds and s is measured in meters.
 - (a) Find the average rate of change in the particle's position from t = 0 to t = 8 seconds.
 - (b) Use your answer in part (a) to determine if the particle is to the left or the right of its initial position at time t = 8.

4. The figure shows the graph of the altitude of a plane (h, in feet) from takeoff, t = 0 minutes, to t = 45 minutes.



Use the graph to determine on which five-minute interval, 0-5, 5-10, 10-15, etc, the average rate of change in height is greatest.

5. For each of the following functions, simplify the expression

$$\frac{f(x+h) - f(x-h)}{2h}$$

(a)
$$f(x) = 2x + 5$$

(b)
$$f(x) = x^2 + 3x + 4$$