Angles Formed by Chords

In this lesson you will investigate the relationship between the angles formed by chords in a circle and the arcs they intercept.

Open chords.tns on your TI-Nspire handheld and follow along with your teacher, using this worksheet as a reference throughout the lesson.

Name \qquad

1.1	1.2	1.3	1.4

Angles Formed by Chords in a Circle
THEOREM: The measure of angle formed by two chords intersecting within a circle is equal to one-half the sum of the measures of the intercepted arcs.

On page 1.2, you will find circle O with arcs $B D \& A C$, as well as angle $D E B$, all labeled with their measures. As you drag any of the endpoints of the 2 chords, notice how "a +b " changes to reflect the sum of the 2 arcs. More importantly, take note of the measure of angle DEB relative to the value of this sum. The constant 2:1 ratio indicates that the measure of the angle is truly one-half the sum of the intercepted arcs.

Applying the Theorem

Now, use the theorem, and the diagrams below, to answer the questions on pages 1.3 to 1.5 .

\#1.3

\qquad

Geometric Proof

On page 1.7, you are presented with a 2-column proof of the theorem. Complete the theorem by filling in the missing items in both the Statements and Reasons columns.

STATEMENTS	REASONS
1. Circle O with chords AB and CD , that intersect at E.	1. Given
2. $\mathrm{m} \angle \mathrm{AEC}=\mathrm{m} \angle \mathrm{BAD}+\mathrm{m} \angle \mathrm{CDA}$	2.
3. $\mathrm{m} \angle \mathrm{BAD}=1 / 2 \mathrm{~m}$ arc BD and $\mathrm{m} \angle \mathrm{CDA}=1 / 2 \mathrm{~m}$ arc AC	3.
4. $\mathrm{m} \angle \mathrm{AEC}=$	4. Substitution
5. $\mathrm{m} \angle \mathrm{AEC}=1 / 2(\mathrm{~m}$ arc $\mathrm{BD}+\mathrm{m}$ arc AC$)$	5. Greatest common factor

