Angles Formed by Chords

Name

In this lesson you will investigate the relationship between the angles formed by chords in a circle and the arcs they intercept.

Open *chords.tns* on your TI-Nspire handheld and follow along with your teacher, using this worksheet as a reference throughout the lesson.

1.1 1.2 1.3 1.4 DEG AUTO REAL

Angles Formed by Chords in a Circle

THEOREM: The measure of an angle formed by two chords intersecting within a circle is equal to one-half the sum of the measures of the intercepted arcs.

On page 1.2, you will find circle O with arcs BD & AC, as well as angle DEB, all labeled with their measures. As you drag any of the endpoints of the 2 chords, notice how "a + b" changes to reflect the sum of the 2 arcs. More importantly, take note of the measure of angle DEB relative to the value of this sum. The constant 2:1 ratio indicates that the measure of the angle is truly one-half the sum of the intercepted arcs.

Applying the Theorem

Now, use the theorem, and the diagrams below, to answer the questions on pages 1.3 to 1.5.

Geometric Proof

On page 1.7, you are presented with a 2-column proof of the theorem. Complete the theorem by filling in the missing items in both the Statements and Reasons columns.

STATEMENTS	REASONS
1. Circle O with chords AB and CD, that intersect at E.	1. Given
2. $m \angle AEC = m \angle BAD + m \angle CDA$	2.
3. $m \angle BAD = \frac{1}{2} m \text{ arc } BD$ and $m \angle CDA = \frac{1}{2} m \text{ arc } AC$	3.
4. m∠AEC =	4. Substitution
5. m $\angle AEC = \frac{1}{2}$ (m arc BD + m arc AC)	5. Greatest common factor