Graphing the Tangent to a Curve

by - Lynda Ferneyhough

Activity overview

Students will graph a function and the graph of the tangent line's slope as a point moves around the curve.

Concepts

- An investigation in the relationship of tangents to curves.

Teacher preparation

Students will work from a calculator document.
Classroom management tips
Each student can be given a different function by using the last four digits of their student number as the coefficients in a cubic function. Positive and negative signs can be used alternately. A cubic function with visible local maximum and local minimum points is easier to see the affect of the investigation.

TI-Nspire Applications
TI-Nspire, Graphs, Lists \& Spreadsheet and Notes are used during this activity.

Step-by-step directions

Students will enter a function and investigate the slope of the tangent line at a point as it moves around the curve. The next page is a Graphs page. Press 숭유 $>$ Graphs.
Students enter a function $f 1(x)=a \cdot x^{3}+b \cdot x^{2}-c \cdot x-d$ using the last four digits of their student number for the coefficients a, b, c, d. Hide or show the function line by pressing ©itr \mathbf{G}. Alter the window as necessary. Press (mem) © Window/Zoom > Window Settings.
A sample is shown at the right here.
Place a point, A, on the curve and draw the tangent at the point. (ment) > Points \& Lines > Point On, move to curve until pencil appears. Press enter then label point as capital A. Hovering over the x and y coordinates allows you to reduce the accuracy by pressing the negative sign. (menul) > Points \& Lines > Tangent, move to curve until pencil appears.

Measure the slope of the tangent and store the value as slope. menul $>$ Measurement > Slope, move to the tangent line and (enter). Click on the slope value until it is shaded press tsshit) (Var) and enter word "slope".
Store the x-coordinate of point A as xa.

The next page is Lists \& Spreadsheet. Press 전요 > Lists \& Spreadsheets.

Move to white space beside column letter. Call column A xcoa, and column B tanslope.

In column A's formula line do an automatic data capture of $\boldsymbol{x a}$, and in column B capture slope. Press menu > Data > Data Capture > Automated Data Capture.

Return to the graph $\oplus 1$
 Graph Type > Scatter Plot

Put xcoa into the x-list and tanslope into the y-list. Enter to get variable list, choose name and tab to next list.

Grab point A and slowly move it around the curve. Move over point A and press 图 until the hand closes.

You are going to enter a function and
investigate the slope of the tangent line at a
point as it moves around the curve.
The next page is a Graphs page.
Enter a function $f 1(x)=a \cdot x^{3}+b \cdot x^{2}-c \cdot x-d$
using the last four digits of your student
number for the coefficients a, b, c, d.
Alter the window as necessary.
1.2 1.3 1.4
The next page is Lists \& Spreadsheet.
Call column A xcoa, and column B tanslope.
In column A 's formula line do an automatic
data capture of $x a$, and in column B capture
slope.

| 1.1 |
| :--- | :--- |
| Place a point, A , on the curve and draw the |
| tangent at the point. |
| Measure the slope of the tangent and store |
| the value as slope. |
| Store the x -coordinate of point A as xa. |
| 4.4 1.5 |
| Return to the graph.
 Change the graph type to scatterplot.
 Put xcoa into the x list and tanslope into the y
 list.
 Grab point A and slowly move it around the
 curve. |

