AP Precalculus TI-84 Plus CE Technology

TIPS FOR THE AP PRECALCULUS EXAM

TEACHER DOCUMENT

Thursday Night Precalculus Series April 4, 2024

In this AP Precalculus Live session, we will explore questions which use technology to prepare for the AP Precalculus Exam.


About the Lesson

- This Teacher Notes guide is designed to be used in conjunction with the AP Precalculus Live session and Student Problems document that can be found on-demand:
 - <u>https://www.youtube.com/live/UCb-</u> endHGIQ?si=uVBT4ePTjOH8Fvyz
 - Please note that not all problems/content from the Student Problem Sheet is covered in the video component. Student/Teacher Notes are also useful without students viewing the "Live Session" but can be enriched by that resource.
- This session involves exploring a variety of questions that involve the use of the graphing calculator, such as:
 - Input output values and zeros of a function.
 - o Regression.
 - o Exponential models.
 - Logarithmic functions.
 - Piecewise defined functions.
- Students should be able to use the TI-84 to answer multiple choice and free response questions on the AP Precalculus Exam.

Class Discussion: Use these questions to help students communicate their understanding of the problem. These questions are presented in the *Live* video as well.

AP Precalculus Mathematical Practices

- 1.A: Solve equations and inequalities represented analytically, with and without technology.
- 1.C: Construct new functions, using transformations, compositions, inverses, or regressions, that may be useful in modeling contexts, criteria, or data, with and without technology.

Looking Ahead: Tips for the AP® Precalculus Exam

Materials:

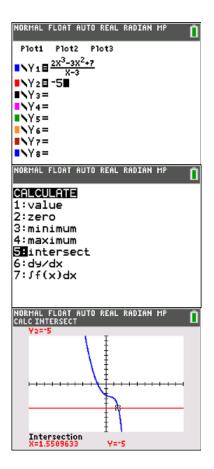
Student document Precal_problems_04_04 Teacher document problems_solutions_04_04 YouTube https://www.youtube.com/live/U CbendHGIQ?si=uVBT4ePTjOH8Fv yz

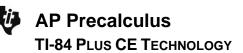
AP Precalculus TI-84 PLUS CE TECHNOLOGY

- 2.A: Identify information form graphical, numerical, analytical, and verbal representations to answer a question or construct a model, with and without technology.
- 2.B: construct equivalent graphical, numerical, analytical, and verbal representations of functions that are useful in a given mathematical or applied context, with and without technology.

Source: AP Precalculus Course and Exam Description, The College Board

Problem 1.


The function *f* is defined by $f(x) = \frac{2x^3 - 3x^2 + 7}{x - 3}$. What input value(s) in the domain of *f* yields an output value of -5?


Sample Solution:

Refer to the Teacher Solutions Document for the full solution to this problem.

Technology Tip: Select <u>alpha</u>[*X*,*T*,*θ*,*n*] to have a fraction template. Graph using a standard window. Select <u>and trace</u> to calculate an intersection point.

Technology Tip: If you need the x value of the intersection point for another calculation, go back to the calculator screen and type $[\overline{x, \tau, \theta, n}]$ [enter].

TEACHER DOCUMENT

TIPS FOR THE AP PRECALCULUS EXAM

Class Discussion:

Should we be concerned about what is happening with the graph to the right of 5?

Possible Answers: Yes, if the student is using the graph of f to find the input when the output is -5, then it would be a good idea to explore the graph by changing the window.

Class Discussion:

What is going on with this graph at x = 3?

Possible Answers: The graph has a vertical asymptote.

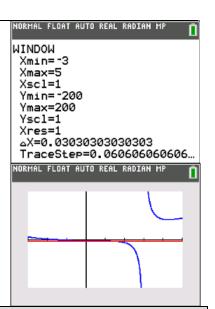
Problem 2.

The table shows values for a function f at selected values of x.

x	-2	-1	0	1	2
f(x)	-0.5	0.1	-2	0.5	10

A cubic regression is used to model the function f. What is the value of f(0.5) predicted by

the cubic regression model?


Sample Solution:

Refer to the Teacher Solutions Document for the full solution to this problem.

Technology Tip: Select stat and 1: Edit to enter the data. [L1] will represent the x-values and [L2] will represent the function values.

Go to the Stat Plot (2nd y=). Use Zoom Stat.

NORMAL	FLOAT	AUTO	REAL	RADIAN	MP	٥
Li	L2	L۵		L4	Ls	2
-2 -1	-0.5					
	-2					
0 1 2	0.5 10					
L2(6)= Normal	FLOAT	AUTO	REAL	RADIAN	MP	0
STAT	PL01	s				
18 Plo	ot10)ff				
	L1 L		•			
2:P10						
	L1 L		•			
3:P10	5t30		_			
4:P10			•			
5:P10						
5.FI	JESVI					

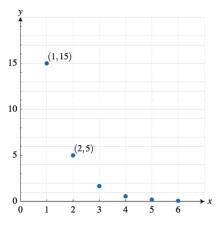
TEACHER DOCUMENT

NORMAL FLOAT AUTO REAL RADIAN MP

Technology Tip: Go back to the Stat menu and select Calc. Select 6: CubicReg. Store the regression in Y1. Select <u>alpha</u> trace as a shortcut to select Y1.

Either the graph screen or the calculator screen may be used to find Y1(0.5).

Plot1 Plot2 Plot3
Off Off
Type: 🚾 🗠 🏊 🗠 🗠 🗠
Xlist:L1 Ylist:L2
Mark : 🖬 + 🔹 🕖
Color: BLUE
NORMAL FLOAT AUTO REAL RADIAN MP
T
1 1 0
l I
± ±
1 ‡
<u> </u>
1 1
NORMAL FLOAT AUTO REAL RADIAN MP
EDIT CALC TESTS
1:1-Var Stats
1:1-Var Stats 2:2-Var Stats
3:Med-Med
4:LinRe9(ax+b) 5:QuadRe9
61CubicRe9
7:QuartReg
8:LinRe9(a+bx) 9↓LnRe9
NORMAL FLOAT AUTO REAL RADIAN MP
CubicReg y=ax ³ +bx ² +cx+d
a=0.8083333333
b=1.6
c=-0.6083333333 d=-1.58
d- 1.58 ∎
NORMAL FLOAT AUTO REAL RADIAN MP
Y1=0.80833333333341X^3+1.6X^2+*0
I /
± /
↓ ↓ /
İ
X=0.5 Y=-1.383125


AP Precalculus TI-84 Plus CE Technology

TEACHER DOCUMENT

A	NORMHE FLOHT HOTO KEHL KHOIHN MP
Class Discussion:	Y1(0.5)
Does the model underestimate or overestimate the actual value	-1.383125
at $x = -1?$	
Possible Answers: The model predicts –0.18, but the given	
value is 0.1. The model predicts a value below the actual value,	
so it is an underestimate	

Problem 3.

A geometric sequence has the form $g_n = g_k \cdot r^{(n-k)}$. The graph of a geometric sequence, g_n , is shown in the figure.

What is the value of g_5 ?

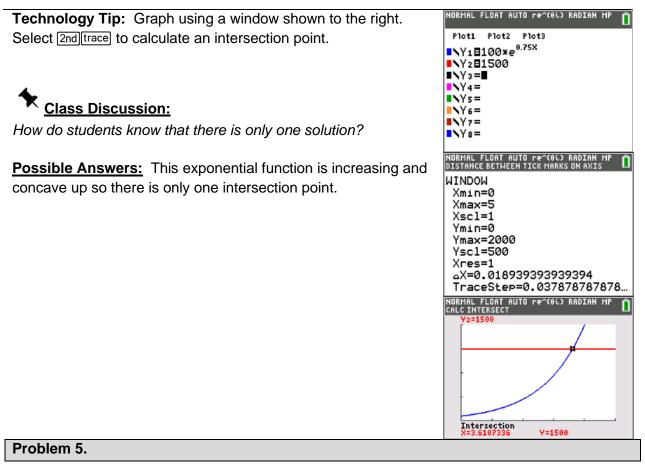
Sample Solution:

Refer to the Teacher Solutions Document for the full solution to this problem.

Problem 4.

The growth of bacteria in a culture is modeled by $y = 100e^{0.75t}$, where *t* is measured in days. At what time *t* is the number of bacteria approximately 1500?

Sample Solution:


Refer to the Teacher Solutions Document for the full solution to this problem.

AP Precalculus TI-84 PLUS CE TECHNOLOGY

TIPS FOR THE AP PRECALCULUS EXAM

GY

TEACHER DOCUMENT

Consider the logarithmic functions f and g defined by $f(x) = \log_3(2.5x+1)$ and

 $g(x) = 3 - 2\log_3(1.4x - 1)$. Find a zero of the function *h* defined by h(x) = f(x) + g(x).

Sample Solution:

Refer to the Teacher Solutions Document for the full solution to this problem.

Technology Tip: Select Math > A: logBASE(to enter a logarithmic function with a base of 3. A shortcut is alpha window).

For Y3 enter Y1 + Y2. Y1 and Y2 are found using vars or alpha trace.

NORMAL FLOAT AUTO re^(8i) RADIAN MP	0
Plot1 Plot2 Plot3	
NY1Elo93(5+1)	
NY2■3-2*lo93(1.4-1)	
■ NY3E Y1+Y2	
■ \ Y4=	
■NY 5 =	
NY 6=	
NY 7= NY 8=	
N T 8-	

TEACHER DOCUMENT

Technology Tip: Trace will identify which graph we are interested in using.

Graph using a window shown to the right. Select 2nd trace to calculate a zero.

Class Discussion:

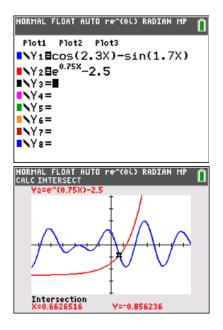
In the algebraic solution using the quadratic formula, there are two solutions. Why do we have only the one solution of 36.233?

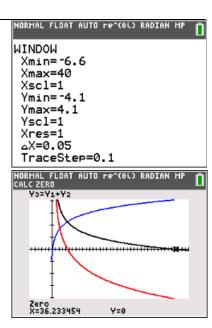
Possible Answers: The quadratic formula solution of -0.366 is called an extraneous solution. The value of -0.366 is not in the domain of the function g.

Problem 6.

The function f is given by $f(x) = \cos(2.3x) - \sin(1.7x)$. The function g is given by $g(x) = e^{0.75x} - 2.5$. Find the input value such that f(x) = g(x).

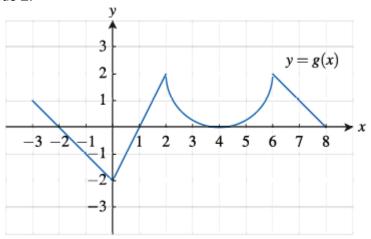
Sample Solution:


Refer to the Teacher Solutions Document for the full solution to this problem.


Graph the functions using a Zoom Decimal window. Find the intersection point.

How do we use the features of an exponential function to be certain that there is only one intersection point?

Possible Answers: This exponential function g has a vertical translation down 2.5 units and is always increasing; therefore, g will only intersect the periodic function once.



AP Precalculus TI-84 PLUS CE TECHNOLOGY

Problem 7. (A) – (C)

The graph of the function g is shown in the figure and consists of three line segments and a semicircle with radius 2.

The function *f* is given by $f(x) = \frac{-3x^2 + 1.9x + 4.5}{x^3 + 2x^2 + 1}$.

- (A) (i) The function h is defined by $h(x) = (f \circ g)(x) = f(g(x))$. Find the value of h(7), or indicate that it is not defined.
 - (ii) Find all values of x for which g(x) = -1, or indicate there are no such values.
- (B) (i) Find all real zeros of f, or indicate there are no such values.
 - (ii) Determine the end behavior of f as x increases without bound. Express your answer using the mathematical notation of a limit.
- (C) (i) Determine if an inverse function of g can be constructed for all values of x in the closed interval [2,6].
 - (ii) Give a reason for your answer based on the definition of a function and the graph of g.

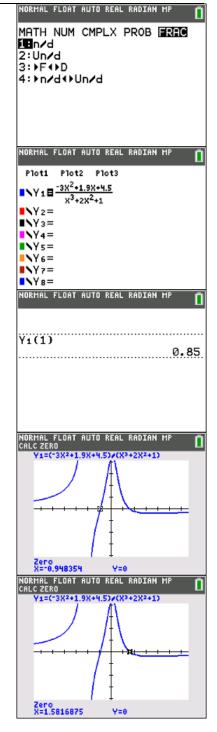
Sample Solution:

Refer to the Teacher Solutions Document for the full solution to this problem.

AP Precalculus TI-84 PLUS CE TECHNOLOGY

TEACHER DOCUMENT

<u>Technology Tip</u>: Use the fraction template in the y= to define the function f.


Calculate the value on a calculator screen.

Use a graph of the function to calculator the zeros.

Class Discussion:

Why does this function's values approach zero as x increases without bound?

Possible Answers: If we look at the polynomials in the numerator and denominator, the cubic in the denominator dominates the quadratic in the numerator.

Note: The following problem 8 is not discussed in the video.

Problem 8. (A) - (C)

The cost of an Uber ride in Boston is modeled by the function C given by

$$C(m) = \begin{cases} a \cdot m + b \cdot m^2 & \text{if } 0 < m \le 5 \\ d \cdot (m-5) + 25 & \text{if } m > 5 \end{cases}$$

where *m* is measured in miles and *C* is measured in dollars. Two Uber riders reported that for m = 1 the cost was \$9.00 and for m = 3 the cost was \$21.00.

- (A) (i) Use the given data to write two equations that can be used to find the values for the constants *a* and *b* in the expression for C(m).
 - (ii) Find the values of constants a and b.
- (B) (i) Use the given data to find the average rate of change of the cost of a ride, in dollars per mile, from m = 2 to m = 4. Show the computations that lead to your answer.
 - (ii) Interpret the meaning of your answer from (i) in the context of the problem.
 - (iii) The two pieces of the function *C* connect at the transition point when m = 5. It is known that $\lim_{m\to 5} C(m) = 25$ and C(6) = 27.5. Consider the average rates of change of *C* from m = 5 to m = p miles, where p > 5. Are these average rates of change less than or greater than the average rate of change from m = 2 to m = 4 miles found in (i)? Explain your reasoning.
- (C) (i) Using the model *C* to predict the cost of an Uber ride, what is the maximum amount a rider could pay? Explain your reasoning.

Sample Solution:

Refer to the Teacher Solutions Document for the full solution to this problem.

Wrap Up

Upon completion of the discussion, the teacher should ensure that students understand:

• The tasks that students need to be able to perform using the TI-84 for the exam.

For more videos from the AP Precalculus Live series, visit our playlist https://www.youtube.com/playlist?list=PLQa_6aWmaC6B-5h5n2Cr5h3G2ZPfJ0HGI

**Note: This activity has been developed independently by Texas Instruments. AP is a registered trademark of the College Board, which was not involved in the production of, and does not endorse, this product. Policies subject to change. <u>Visit www.collegeboard.org.</u>