## Equations of a Circle

1. How does the equation of a circle change when you move point $B$ ? What specific variable is changing?

The number on the right changes (the radius variable)
2. How does the equation of a circle change when you move point A ? What specific variable(s) are changing?

The number with the $x$ and $y$ change.
3. How does the equation of a circle change when you move both points A and B ? Again, what specific variables are changing?

Both of the parts of the equation change on BOTH sides of the $=$ sign.
4. Is there a difference in the equation if the center is on the origin as opposed to anywhere else on the coordinate plane? Give an example of an equation of a circle when the center is on the origin and one example of an equation of a circle when the center is not on the origin.

If the center is on the origin, the variables stay $x$ and $y$, if not, they have a number with them.

$$
x^{2}+y^{2}=125 \quad(x+2)^{2}+(y-5)^{2}=63
$$

## Practice Problems Part 1

1. $\mathrm{x}^{2}+\mathrm{y}^{2}=49$
$\mathrm{C}:{ }_{-} \quad(0,0) \_\mathrm{r}={ }_{-} 7$
2. $(x-4)^{2}+(y-2)^{2}=16 \quad C$ : $\qquad$ $(4,2) \_r=$ $\qquad$
3. $(x-5)^{2}+y^{2}=64$

C: $\qquad$ $\mathrm{r}=$ $\qquad$ 8 $\qquad$
4. $\mathrm{x}^{2}+(\mathrm{y}+2)^{2}=12$

C: $\qquad$ $(0,-2) r=$ $\qquad$ $\sqrt{12}$ $\qquad$

Before continuing, use the diagram on page 3.2 (on the handheld TI Nspire) to check your answers for accuracy.
5. Write the equation of a circle with the center $(3,4)$ and a radius of length 3 .

$$
(x-3)^{2}+(y-4)^{2}=9
$$

6. Write the equation of a circle with the center $(-4,5)$ and a radius of length 4.

$$
(x+4)^{2}+(y-5)^{2}=16
$$

7. Write the equation of a circle with the center $(7,0)$ and a radius of length $3 / 4$.

$$
(x-7)^{2}+(y)^{2}=\frac{9}{16}
$$

8. Write the equation of a circle with the center $(-3,-6)$ and a radius of length $\sqrt{ } 5$.

$$
(x+3)^{2}+(y+6)^{2}=5
$$

## Use the diagram on page 3.2 (on the handheld TI Nspire) to

 check your answers for accuracy.9. Can you and your partner come up the equation of a circle whose center is at the origin and the equation of a circle whose center is $(\mathrm{h}, \mathrm{k})$ ?

$$
(x-h)^{2}+(y-k)^{2}=r^{2} \quad x^{2}+y^{2}=r^{2}
$$

