

© Texas Instruments 2014. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Author: P. Fox

Λ

Q.5. Which of the following is true for angle θ ?

a)
$$\tan(\theta) = \frac{m}{n}$$
 b) $\tan(\theta) = \frac{n}{p}$ c) $\tan(\theta) = \frac{p}{m}$
d) $\tan(\theta) = \frac{m}{p}$ e) $\tan(\theta) = \frac{n}{m}$

Q.6. Which of the following is true for angle θ ?

a)
$$\tan(\theta) = \frac{m}{n}$$
 b) $\tan(\theta) = \frac{n}{p}$ c) $\tan(\theta) = \frac{p}{m}$
d) $\tan(\theta) = \frac{m}{p}$ e) None of these m

Q.7. A right angled triangle has sides *a*, *b* and *c*. If $\tan^{-1}\left(\frac{a}{b}\right) = 60^{\circ}$ then the sides lengths from smallest to largest would be:

Q.8. For a given right angled triangle: $sin(\theta) = 0.3$. The triangle is then enlarged by a factor of 2. Which statement is true for the new triangle?

a) $\sin(\theta) = 0.15$ b) $\sin(\theta) = 0.3$ c) $\sin(\theta) = 0.6$ d) $\sin(\theta) = 1.2$ e) None of these

- Q.9. For a given right angled triangle: $sin(\theta) = 0.3$. The **angle** θ is doubled. Which statement is true for the new triangle?
 - a) $\sin(\theta) = 0.15$ b) $\sin(\theta) = 0.3$ c) $\sin(\theta) = 0.6$ d) $\sin(\theta) = 1.2$ e) None of these
- Q.10. A right angled triangle has sides *a*, *b* and *c*. If $\tan^{-1}\left(\frac{a}{b}\right) = 30^{\circ}$, which of the following would produce the smallest value:

© Texas Instruments 2014. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Author: P. Fox

