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Transient Circuit
Analysis: Symbolic

This chapter describes how to use the differential equation
solver, deSolve( ) , to solve first- and second-order circuits
containing resistors, capacitors, inductors, DC sources, and
exponential sources. It also shows how to graph the
solutions and find the zero crossing and peak values.

Topic 4:  RC First-Order Circuit

In the circuit in Figure 1, the switch has been open for a long time. At time t =0, the switch closes.
Find v(t) after the switch is closed, that is, for t >0.

Figure 1.  A simple RC circuit

Kirchhoff’s current law is applied to the circuit; therefore, the sum of the currents out of node 1 is
zero. Current flow in the direction of the voltage drop across a capacitor is

i C
dv

dt
=  or i Cv= ′

Therefore, the nodal equation at node 1 is
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1. Clear the TI-89 by pressing 2 ˆ 2:NewProb  ¸.

2. Enter this equation as shown in screen 1.

 c v | 36 d e 6 « v 2 È e 8 « v e 12 Á 0 § n1

3. Since the switch has been open for a long time, any
charge originally on the capacitor has been discharged
through the 12Ω resistor. This initial condition is
expressed as v(0) = 0.

(1)

Note: To enter È, press 2 È; it
represents d/dt.

Enter the nodal equation, n1, and the initial condition, v(0) = 0,
into the deSolve()  command as shown in screen 2.

½ deSolve( n1  ½ and v c 0 d Á 0 b t b v d §

eqn

The solution is v(t) = 24 N 24e-2t  V, where t is in seconds.
(2)

Topic 5:  Graphing First-Order Solutions

A graph of this solution may help you understand it — graph
v(t) for 0≤t≤3 seconds.

1. Since y is always graphed versus x on the TI-89, v must
be converted to y and t to x. This is accomplished in the
Y= Editor (¥ #) using the “with” operator, Í. To
convert t to x and v(t) to y1(x), enter the expression as
shown in screen 3.

v Í eqn ½ and t Áx

This expression causes v to be graphed using its value
given in variable eqn and to use x instead of t.

(3)

2. Press ¥ $ to set the graph range of t from 0 to 3
seconds and v from 0 to 25 V, as shown in screen 4.

The y-axes tick marks are set with yscl . The resolution
or “closeness” of the pixels representing adjacent
calculated values is set by xres . Picking xres=5 will
complete the graphs more quickly, but also gives more
jagged results.

(4)

3. Press ¥ % to see a graph of the solution
(screen 5).

(5)
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4. Press … to trace the graph and to display the cursor
location, xc and yc. The cursor can be moved with the
cursor keys, A and B (screen 6).

(6)

Note : xc and yc are variables that
can be accessed from the Home
screen.

5. Tracing helps to verify that the voltage is approaching
24 V for large t as the equation shows, too. This can be
verified with the limit( )  command as well (screen 5).

" ½ limit(  v Í eqn b t b ¥ * d

(7)

Topic 6:  First-Order Circuit with an Initial Condition

Consider the circuit of Topic 5 (Figure 1) with an initial voltage on the capacitor of -10 V at time
t =0.  Figure 2 shows this circuit just after the switch has closed.

Figure 2. Circuit of Figure 1 just after the switch is closed

The circuit equation is the same as before. The initial condition
is changed to v(0) = -10 V.

1. Enter the equation as shown in screen 8.

½ deSolve(  n1 ½ and v c 0 d Á · 10 b t b
v d § eqn

(8)

2. Since the capacitor voltage starts with v(0) = -10 V, use
¥ $ and set ymin  to -15. There is no need to reset
the other window variables.

3. The results are graphed with ¥ % as shown in
screen 9.

(9)
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4. The graphical form of the solution makes it easy to find
the instant of time when the capacitor voltage is 0.

Move the cursor to the vicinity of the zero crossing by
pressing … (the Trace tool) and using the cursor keys
A and B (screen 10).

At time t =0.19 seconds, the voltage is small, 0.74 V, but
not close enough.

(10)

Note : Press 2 A or 2 B to take
big steps, or hold down A or B.

More digits can be displayed by pressing 3 and
changing Display Digits  to 5:Fix 4 , but yc will not be any
closer to 0.

5. To get closer, press ¥ $ and set xres  to a smaller
value (try xres=2), but it will take longer to complete the
graph (screen 11). This result may be closer to 0, but
maybe not close enough due to graphical resolution.

(11)

6. A “cleaner” approach to finding the zero crossing is
through the Zero command.  Press ‡ 2:Zero  (screen 12.)

(12)

7. Position the cursor to the left of the zero crossing to set
a Lower Bound and press ¸ (screen 13).  Note that
the location is marked on the screen.

(13)

8. Move the cursor to the right of the zero crossing and
press ¸.

A much more accurate value for the time at which the
voltage is zero is now displayed in screen 14.

This more accurate time is t = .1742 seconds. (14)
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9. Return to the Home screen and find this value using the
zeros( )  command (top of screen 15).

" ½ zeros(  v Í eqn b t d

10. Press ¥ ‘ to get a floating point approximation of the
exact solution (bottom of screen 15).

Note that the more accurate graphical answer agrees
with the floating point answer through the four
significant figures.

11. Reset Display Digits  (3) to Fix 2 and xres  to 5
(¥ $).

(15)

Topic 7:  First-Order Circuit with a Time Varying Source

Modify the circuit of Topic 6 to include v(0) =-10 V with the battery and switch replaced by a
source with vs(t) =36e -3t  V for t≥0 s.

Figure 3. The circuit of Figure 2 with a time varying source

1. Edit n1 to include this different source by substituting
36e-3t for 36. Copy the original equation to the command
line and edit it by using C repeatedly to move up the
history area to the original equation and pressing
¸. Or just enter the equation as shown in screen 16.

 c v | 36 ¥ s · 3t d d e 6 « v 2 È e 8 « v e
12 Á 0 § n1

(16)

Note:  s is entered by pressing
¥ s and - is entered by pressing
·.

2. Use deSolve( )  to get the solution as shown in screen 17.
½ deSolve( n1 ½ and v  c 0 d Á · 10 b t b
v d § eqn

(17)

3. Use expand( )  to put eqn in a more familiar form
(screen 18).

½ expand( eqn  d

The solution is v(t) = 38e-2t-48e-3t V

(18)
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4. Press ¥ % to graph the solution since eqn is still
defined as the equation to graph in the Y= Editor
(screen 19). Note that the peak value is much different
than previously.

(19)

5. The range of the graph can be altered to see more of the
behavior by pressing „ A:ZoomFit  to make the curve fit
the window (screen 20).

(20)

6. Find the zero crossing using ‡ 2:Zero  as before.

7. Find a good first estimate of the peak value and its time
with Trace, …, where v = 3.52 V at time t = 0.66
seconds.

8. Find a more accurate value ‡ 4:Maximum . Use it the
same way as ‡ 2:Zero  to get v = 3.53 V at t = 0.64
seconds.

9. Return to the Home screen and use the fMax( ) command
to find an exact answer (top of screen 21).

" ½ fmax(  v Í eqn b t d

10. Substitute the result of the fMax( ) command into the
original equation (eqn) using the “with” operator, Í
(bottom of screen 21).

eqn Í 2 ±

(21)

11. Find the floating-point solution using ¥ ‘
(screen 22). Note that the ans(2) command was used to
get the answer from second line of the history area.

The accurate graphical answer agrees with the floating
point answer.

(22)
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Topic 8:  RLC Second-Order Circuit

Given the circuit in Figure 4 in which the current at time t=0 s is 10 A, (i(0)=10), and the time
derivative of the current at t=0 s is 0, (i′(0)=0), find i(t) for t>0 s.

Figure 4: A simple RLC circuit

Kirchhoff’s voltage law states that the sum of the voltages around every closed loop is zero. The
voltage drop across a capacitor in the direction of current flow is

vc
C

idt= z1

and the voltage drop across an inductor in the direction of current flow is

vl L
di

dt
=

Therefore, Kirchhoff’s voltage law for the single loop of the circuit above is given as

iR L
di

dt

1

C
idt 0+ + =∫

A derivative with respect to time of this equation and a rearrangement of terms gives

d i

dt

R

L

di

dt

1

LC
i 0

2

2
+ + =

The differential equation can be rewritten as

i i' '
R

L
'

1

LC
i 0+ + =

with the notation of i'(t) and i''(t) as the first and second time
derivatives, respectively.

1. Clear the TI-89 by pressing 2 ˆ 2:NewProb  ¸.

2. Enter the equation as shown in screen 23.

i 2 È 2 È « r e ell p i 2 È « 1 e c ell p c d p

i Á 0 § eqn

(23)

Note : “ell” is entered instead of “l”
because “l” and “1” look very similar.
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3. Enter the numeric values of r, c, and ell as shown in
screen 24.

1 § r

.1 § c

1 § ell (24)

4. Set the radian mode before running deSolve( ) ;
otherwise, the solution may appear differently than
expected. ¥ 1 should have set the radian mode. To be
sure, press 3 and set Angle  to RADIAN.

5. Use deSolve()  to find i as shown in screen 25.

½ deSolve( eqn ½ and i 2 È c 0 d Á 0
½ and i c 0 d Á 10 b t b i d § eqn2

(25)

The result of deSolve( )  has been stored in a variable
called eqn2, although only a small portion is visible in
the entry line. To see the rest of the result, press C then
B until the rest of the line is visible, as shown in screen
26. The complete result is

i(t) = 10.00e
− t

2 cos(3.12t) + 1.60e
− t

2 sin(3.12t) A

(26)

If c is entered as an exact value of 1/10 rather than 0.1,
the answer will be in exact form. As a result, it may
contain square roots and fractions that aren’t always as
easily interpreted. For decimal results, be sure that at
least one of the element values is entered as a decimal
number.

Engineers generally express values in terms of a single
sinusoid, cosine or sine, and an angle rather than the
sum of a cosine and a sine.

6. Convert the solution from deSolve( )  to the more
common form with tCollect( )  (screen 27).

½ tCollect( eqn2  d § eqn3

The complete result is

i(t) = 10.13e
− t

2 sin(3.12t + 1.41) A

(27)
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To convert the angle from radians to degrees, multiply the
angle by 180/π, that is, 1.41*180/π=80.79°. Therefore, an
alternate form of the current answer is

i(t) = 10.13e
− t

2 sin(3.12t + 80.79°) A

Let’s graph it.

1. Press ¥ # and enter the equation as y2 (screen 28).

10.13 p ¥ s · t e 2 d p 2 W 3.12 t « 80.79 2 “

d Í t Á x

(28)

Note :  The ó symbol is essential for
correct graphing as it “overrides” the
radian mode setting.

From the differential equation solution, it is clear that
the time constant is 2, so the graph should extend for
several time constants.

2. Press ¥ $ and set xmin = 0, xmax = 5, ymin = -10,
and ymax = 10.

3. Press ¥ %.

Note :  To see how to enter other
special characters, press ¥ ^.

(29)

In screen 29, y1 graphs the results from the tCollect( )  command while y2 graphs the simplification.
They both should be the same graph if the simplification was done correctly; however, y2 graphs
more quickly. Refer to the Tips section to see how to speed up the graphing of y1.

The result looks like a nice, under-damped, second-order response.

Tips and Generalizations

Faster Graphs

Graphing y1 as shown in the previous section is a handy way to
graph the output of deSolve( )  (or solve( ) ), but it graphs more
slowly than just retyping the equation into the Y= Editor. One
way to graph i more quickly without reentering it is to use the
“with” operator, Í, to extract the equation for i prior to
graphing and to store it as another variable. This appears to
occur when the “with” operator, Í, is used for the y function
within the Y= Editor. Screen 30 shows how to extract i from
eqn3 and rename it as eqn4.

i Í eqn3 § eqn4

(30)

Now press ¥ # and enter y3 as shown in screen 31.

In the Graph screen, the graph of y3 should be the same as the
last two graphs, but it should appear about twice as fast.

Since y3 is the only function checked, it is the only one that is
graphed.

(31)

Note :  † is used in the Y= Editor to
select and deselect the functions to
be graphed.
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Exact vs. Approx

If the exact/approx mode (3 „) hasn’t been changed, the TI-89 will produce exact (rational
rather than decimal) results when it can. If a decimal value is used on the input, the output will be
approximate (contains decimal values). If the input has no decimal values, the result will be exact
(in terms of rationals). If a decimal result is desired, press ¥ ‘ rather than just ¸.

Summary

Although an RC circuit was shown here, any first-order equation can be solved and graphed using
these techniques. zeros( )  and fMax( ) also were used. fMin( )  works that same way to find the
minimum of a function. Check the other commands under the ‡ menu in the Graph screen, which
includes Minimums, Derivatives, Tangents, and so forth.

The solve( )  command also has a numeric version called nSolve( )  which finds a numeric solution
rather than symbolic. This shouldn’t be needed for linear equations, but nSolve( )  might be the only
way of getting a solution of non-linear circuits.

In addition, solving for the current in a series RLC circuit has been shown, but these techniques
can be used for finding voltage as well. A parallel RLC circuit could be solved for voltages or
currents, too. In fact, any second-order circuit can be solved by these methods.

Although the TI-89 can find symbolic solutions for up to second-order differential equations, it can
find numeric solution for systems of any number of first-order equations, as shown in Chapter 3.


