Teacher Notes

Activity 14

Discovering the Derivative of the Sine and Cosine Functions

Objective

 Students will discover the derivative of sin(x) and cos(x) by analyzing a scatterplot of x-values and the function's numerical derivatives at these x-values.

Applicable TI InterActive! Functions

- Define variable:= value
 - *{list}→list_name*
- NDeriv
 nDeriv(*function*, *variable*)
- ♦ Graph

Store

Ŵ

Problem

The slope of the tangent to a curve at a point is defined to be the derivative. By calculating the derivative of a curve at many points a new function can be obtained. By finding the equation that will fit the points, the derivative of $f(x) = \sin(x)$ and $g(x) = \cos(x)$ can be discovered.

Exploration

Steps 1 through 10 are details for the students to set up the problem. When students have completed step 10, their graph should look appear as shown.

Analysis

- 1. $y2(x) = \cos(x)$
- 2. Yes, y2 matches y3.

$$4. \quad f'(x) = \cos(x)$$

- 5. Students answers may vary.
- 6. The graph of f(x) and the scatterplot of numerical derivatives have changed. Since $y^2 = \cos(x)$, the graph of f(x) is the same as the graph of y^2 .
- 7. $y_2(x) = -\sin(x)$
- 8. $f'(x) = -\sin(x)$

Additional Exercises

- $2. \quad y2(x) = 2\cos(2x)$
- 3. When $g(x) = \sin(2x)$, $g'(x) = 2\cos(2x)$.
- 5. $y_2(x) = 3\cos(3x)$
- 6. When $g(x) = \sin(3x)$, $g'(x) = 3\cos(3x)$.
- 8. $y_2(x) = 5\cos(5x)$
- 9. When $g(x) = \sin(5x)$, $g'(x) = 5\cos(5x)$.
- 11. $y2(x) = -2\sin(2x)$
- 12. When $g(x) = \cos(2x)$, $g'(x) = -2\sin(2x)$.
- 14. $y2(x) = -3\sin(3x)$
- 15. When $g(x) = \cos(3x)$, $g'(x) = -3\sin(3x)$.
- 17. $y2(x) = -5\sin(5x)$
- 18. When $g(x) = \cos(5x)$, $g'(x) = -5\sin(x)$.
- 19. If $f(x) = \sin(n * x), f'(x) = n \cos(nx)$.
- 20. If $f(x) = \cos(n * x), f'(x) = -n \sin(nx)$.