Teacher Notes

Activity 14

Discovering the Derivative of the Sine and Cosine Functions

Objective

- Students will discover the derivative of $\sin (x)$ and $\cos (x)$ by analyzing a scatterplot of x-values and the function's numerical derivatives at these x-values.

Applicable TI InterActive! Functions

- Define
- Store
- NDeriv
- Graph
variable:= value
$\{$ list \rightarrow list_name
nDeriv(function, variable)

Problem

The slope of the tangent to a curve at a point is defined to be the derivative. By calculating the derivative of a curve at many points a new function can be obtained. By finding the equation that will fit the points, the derivative of $f(x)=\sin (x)$ and $g(x)=\cos (x)$ can be discovered.

Exploration

Steps 1 through 10 are details for the students to set up the problem. When students have completed step 10 , their graph should look appear as shown.

Analysis

1. $y 2(x)=\cos (x)$
2. Yes, $y 2$ matches $y 3$.
3. $f^{\prime}(x)=\cos (x)$
4. Students answers may vary.
5. The graph of $f(x)$ and the scatterplot of numerical derivatives have changed.

Since $y 2=\cos (x)$, the graph of $f(x)$ is the same as the graph of $y 2$.
7. $y 2(x)=-\sin (x)$
8. $f^{\prime}(x)=-\sin (x)$

Additional Exercises

2. $y 2(x)=2 \cos (2 x)$
3. When $g(x)=\sin (2 x), g^{\prime}(x)=2 \cos (2 x)$.
4. $y 2(x)=3 \cos (3 x)$
5. When $g(x)=\sin (3 x), g^{\prime}(x)=3 \cos (3 x)$.
6. $y 2(x)=5 \cos (5 x)$
7. When $g(x)=\sin (5 x), g^{\prime}(x)=5 \cos (5 x)$.
8. $y 2(x)=-2 \sin (2 x)$
9. When $g(x)=\cos (2 x), g^{\prime}(x)=-2 \sin (2 x)$.
10. $y 2(x)=-3 \sin (3 x)$
11. When $g(x)=\cos (3 x), g^{\prime}(x)=-3 \sin (3 x)$.
12. $y 2(x)=-5 \sin (5 x)$
13. When $g(x)=\cos (5 x), g^{\prime}(x)=-5 \sin (x)$.
14. If $f(x)=\sin (\mathrm{n} * x), f^{\prime}(x)=\mathrm{n} \cos (\mathrm{n} x)$.
15. If $f(x)=\cos (\mathrm{n} * x), f^{\prime}(x)=-\mathrm{n} \sin (\mathrm{n} x)$.
