Teacher Notes

G.G.55 Investigate, justify, and apply the properties that remain invariant under rotation about a point. <u>DISTANCE</u>

Lesson Launcher Objective:

1) Discover that distance is preserved under a rotation about a point.

Procedure:

 \triangle A1B1C1 is the image of \triangle ABC under a rotation about point P.

The measures of the sides of the triangles have been indicated.

The student will explore the figure by dragging the vertices of the $\triangle ABC$

1.) Select, grab and drag either of the radius points on the circle..

What is changing? The measures of all the sides.

What is remaining the same? The pre-image side and image side always have the same measure.

2.) Select grab and drag point A or point B.

What is changing? The measures of all the sides.

What is remaining the same? The pre-image side and image side always have the same measure.

3) Select, grab and drag point A, B, C or any radius point then stop and record 5 successive trials by entering the distances in the table below.

Trial #	AB	A1B1	BC	B1C1	CA	C1A1
1						
2						
3						
4						
5						

Answers will vary student to student.

- 4) What seems to be true about the distances AB and A1B1? They are always equal.
- 5) Name any other pairs of segments that share this same property. BC and B1C1, CA and C1B1
- 6) Under the transformation glide reflection is distance preserved? yes
- 7) In your own words explain what it means when a property is preserved. Answers will vary.