Getting Started with the TI-89 Titanium

The opening screen for TI-89 Titanium is similar to the following:

HOME

To access CAS, press the **HOME** button or select **Home** on the opening screen. (**APPS** returns you to the opening screen from all applications)

From the **HOME** screen, you can access the menus by pressing the **F1** to **F6** buttons. The **F6** menu can be accessed by the arrow keys or by pressing 2^{nd} **F1**

F1 Tools

This is similar to a conventional File or Edit menu on a computer program.

Option **8 Clear Home** is useful to clear the HOME screen of previously used expressions.

F2 Algebra

This has many of the CAS commands.

An example of each Algebra command is listed in the table below:

Example	Solution						
solve(x^2-9=0,x)	x = -3 or x = 3						
factor(x^2–16)	(x-4)(x+4)						
expand(x*(x-5))	$x^2 - 5 \cdot x$						
$zeroes(x^2-5x+6,x)$	(2 3)						
$approx(\pi)$	3.14159						
$comDenom(x^2/2+x/5)$	$5 \cdot x^2 + 2 \cdot x$						
	10						
propFrac((5x^2+2x)/10)	$\frac{1}{x^2}$ x						
	$\frac{x^2}{2} + \frac{x}{5}$						
nSolve(3x-5=0,x)	1.66667						
Trig							
tExpand(sin(2x))	$2 \cdot \sin(x) \cdot \cos(x)$						
$tCollect(2cos(x)^2-1)$	$\cos(2\cdot x)$						
Complex							
$cSolve(x^2+9=0,x)$	$x = 3 \cdot i$ or $x = -3 \cdot i$						
$cFactor(x^2+9,x)$	$(\mathbf{x} + -3 \cdot \mathbf{i}) \cdot (\mathbf{x} + 3 \cdot \mathbf{i})$						
$cZeroes(x^2+9,x)$	$(3\cdot i -3\cdot i)$						
Extract							
$getNum(x^2/2+x/5)$	$x \cdot (5 \cdot x + 2)$						
$getDenom(x^2/2+x/5)$	10						
$left(x^2-2x=8)$	$x^2 - 2 \cdot x$						
$right(x^2-2x=8)$	8						

F3 Calc

This has many of the calculus commands:

An example of each Calculus command is listed below:

Example	Solution
$d(x^3+4x^2,x)$	$3 \cdot x^2 + 8 \cdot x$
$\int (3x^2+8x,x)$	$x^3 + 4 \cdot x$
$\lim(x^2-4,x,1)$	-3
Σ (x^2,x,1,5)	55
$\Pi(x^2,x,1,5)$	14400
$fMin(x^2-2x,x)$	x = 1
$fMax(-x^2+4,x)$	x = 0
$arcLen(\sqrt{(9-x^2)},x,-3,3)$	9.42478

Getting Started with the TI-89

taylor($e^{(x)},x,5$)	$\frac{x^5}{120} + \frac{x^4}{24} + \frac{x^3}{6} + \frac{x^2}{2} + x + 1$
$nDeriv(x^3,x,h)$	$3 \cdot x^2 + h^2$
$nInt(x^2,x,1,5)$	41.33333
$deSolve(y"+2y'+y=x^2,x,y)$	$y=(@1 \cdot x + @2) \cdot e^{-x} + x^2 - 4 \cdot x + 6$
	(this is a general solution)

F4 Other

This has miscellaneous commands.

A few examples of useful commands in this menu are listed below:

Example	Solution
Define $f(x)=x^4$	Done
f(-1)	-3
Define ab=5	Done
ab	5
DelVar ab	Done
ab	ab

Another useful feature from this menu is the ability to turn the graph plots on and off using the **FnOn** and **FnOff** selections.

F5 PrgmID

This menu accesses CAS programs. This screen will be blank until programs are written or imported.

F6 Clean Up

Selecting Option 1 Clear a–z is recommended to clear the variables before starting a new session.

2D Plotting

The 2D plotting features are similar to those of a TI-83 or TI-83+. The yellow options above the **F1 to F5** buttons allow you to perform these operations. To access them, press the yellow ◆ button first. You can also use the **Y=**, **Graph** and **Table** applications on the opening screen.

Statistics

Return to the opening screen by pressing the **APPS** button

To enter values into lists for statistical analysis, select **Data/Matrix/Editor** then **New**. In the **Variable** box, enter the name **stat1** and press **Enter**.

Enter the following numbers into c1 and c2 lists.

There are seven menus available in the statistics application. These are:

One simple example of these menus is to select **F4 Calc** then **1–Var Stats** to get this screen:

Use the **ALPHA** key to type in **list1** if it does not appear in the **List** box.

Press Enter to get this screen:

Getting Started with the TI-89

Scro	ll down	with	the	arrow	keys to	view	the	rest	of the	1-Va	ar Sta	ats da	ta.
Ехре	eriment	with	the	other r	nenus.								

Statistical Plotting

To set up a statistical plot, select F2 Plots \Rightarrow Plot Setup to get this screen

Select F1 Define to get this screen.

Use the arrow keys to set **Plot Type** to **Scatter** and **Mark** to **Box**.

In the x and y boxes, use the **ALPHA** button to enter the words **list1** and **list2** respectively.

Select Enter twice to get back to the lists.

Select ♦ F3 (Graph) to plot the data

Experiment with some of the menus such as **Zoom** and **Trace** to manipulate the plot.

Simultaneous Equations

Return to the opening screen by selecting APPS

Select A|b Simultaneous then New.

Enter 2 and 2 for the Number of Eqns and Number of Unknowns

TYPE + CENTER3=OK AND CESC3=CANCEL

Select Enter and replace the 0s with the following values:

Select **F5 Solve** to get the solutions.

3D Plotting

Press the **MODE** button and use the arrow keys to change the **Graph** setting to **3D**. Use the same buttons that are used for 2D graphing to enter and graph the equations. Be aware that there can be a considerable time delay involved with each 3D plot.

Try:
$$z1 = y^2 - x^2$$

Polynomial Root Finder

Return to the opening screen by selecting APPS

Select X_1 = Polynomial then New to get this screen:

ENTER AN INTEGER FROM 1 THROUGH 30

Keep the default setting on 3 and select **Enter**

Enter the following values for a_3 , a_2 , a_1 , and a_0 .

USE + + TO GO TO NEXT COEFFICIENT

Select **F5 Solve** to get the solutions.

USE + + TO GO TO NEXT SOLUTION