Math Forum Teacher Packet TI-PoW: Chirp! Chirp!

Focus Activity: I Notice, I Wonder
http://mathforum.org/mathtools/activity/64538/

Standards

The Strategy

This packet contains a copy of the original problem used to create the activity, rationale and explanation behind the "I Notice, I Wonder" focal activity, and some thoughts on why this activity works well with TI-Nspire ${ }^{\text {TM }}$ technology.

All of the problems and activities are samples of the Math Forum's Problems of the Week, paired with activities from the Problem Solving and Communication Activity Series. We are highlighting activities and problems that make good use of TI-Nspire ${ }^{\text {TM }}$ handhelds.

Teachers and/or students are able to electronically access this and similar problems after setting up a login (free) available from the Math Forum @ Drexel. Sign up using the link on the Technology Problems of the Week (tPoW) login page, or use your existing KenKen® or Problems of the Week login-see this page for details: http://mathforum.org/tpow/about.html

TI-PoW: Chirp! Chirp!

I read once that you can figure out what the temperature is in degrees F (Fahrenheit) by counting the number of chirps that a cricket makes in 15 seconds. I couldn't remember the formula, but I did find some data.

chirps in 15 seconds	temperature in F
25	65
32	72

Question: What could the temperature be when a cricket is chirping 164 times a minute?
Extra: Write a formula that could be used to predict the temperature given the number of chirps per 15 seconds. Note: Use "c" for chirps and " t " for temperature.

This problem presents an opportunity for students to think about patterns, units of measurement and also to work on expressing the pattern as a formula that will lead them to thinking algebraically.

If your state has adopted the Common Core State Standards, this alignment might be helpful:

Grade 6: Expressions \& Equations

6.EE.6. Use variables to represent numbers and write expressions when solving a real-world or mathematical problem.

Grade 7: Expressions \& Equations

Solve real-life and mathematical problems using numerical and algebraic expressions and equations.

Grade 8: Expressions \& Equations

8.EE.7. Solve linear equations in one variable.

This activity focuses on two strategies: Change the Representation and Understand the Problem. The key to understanding this problem is understanding and seeing patterns in the data given. Too often students in math class rush to guess calculations rather than stopping to think, "do I understand what's going on here?" or "what patterns can I see?" or "what are the relationships in the problem."

The first thing we ask students to do in this activity is Notice and Wonder. Those two key words are important because they encourage students to connect to their own ideas and insights into the problem. Rather than trying to guess the right operation or what the teacher thinks is important, we ask students, "What do you notice? What are you wondering?" This encourages students to use their own
ideas to make sense of the problem.
We ask students to notice and wonder about the story of the problem, and then about the data from the problem presented in both a table and a graph. By presenting multiple representations, and asking students to notice and wonder about all three, we begin to support students to think about connections among representations.

The final task we give students is to discuss what is the same and what is different about what they noticed from the table and the graph. Comparing representations is a key skill for learning new representations and making good choices about choosing how to represent data given in a problem.

The TI-Nspire

Join Us!

In this activity we use the TI- Nspire ${ }^{\text {TM }}$ software's linked representations. While the students aren't asked to manipulate the data and compare the results of, say, adding more points, the activity is created so that this is possible. However, you might consider this activity to be a warm-up before doing further work with the linked representations. Do students understand that the graph and table show the same data? Can they find how the graph is labeled? How the data is labeled? Are they showing the same quantities?
Because this activity uses the TI-Nspire ${ }^{\text {TM }}$ software in a more static way, you could use the same prompts in a small-group or whole-group discussion, rather than using the handhelds for students to record their individual thinking.

Do your students like to use their mathematical imaginations? Wonder about math all around them? Discover and invent new patterns? Here are some ways for them to share their ideas and learn about other students' and mathematicians' ideas!
http://mathforum.org/explorers/

| | |
| :--- | :--- | :--- | :--- |
| Are you a Math Explorer? | |
| Do you like to use your mathematical imagination? Wonder about math all around you? Discover and invent new patterns? Here are some ways to share
 your ideas and learn about other students' and mathematicians' ideas! | |
| Problems of the Week | |

The Activity

Key Screen Shots

1.1	1.2	1.3
On the next pages you will see a table and a		
graph representing the problem. What do you		
notice about the table and the graph? What		
do you wonder?		

Possible Responses

Noticings \& Wonderings about the problem	Noticings \& Wonderings about the table	Noticings \& Wonderings about the graph	Similarities \& Differences
It's about crickets and temperature The crickets chirp more when it's hotter They are counting chirps per 15 seconds The problem mentions chirps in one minute I wonder how the crickets know the temperature I wonder if the crickets can count I wonder if this works when it's really hot or really cold	I notice that as you go down the table, the numbers in both columns go up I notice a question mark I notice the question mark goes with 41, I wonder if that has to do with the 164 chirps per minute in the problem I notice the numbers in the temp column are always 40 more than the numbers in the chirp column I notice chirps and temp both go up by 7 from row 1 to row 2.	I notice there are two points I notice the points are on a line that goes up pretty steeply I notice it says (chirps, temp) in the corner I notice the scale is by 20s on the x-axis and by 10s on the y-axis I wonder what the labels for the axes would be in terms of the problem I wonder where the (41, ?) point would go	The graph makes me think of a line but the table doesn't You could use the graph to predict where the (41, ?) point would go without doing any calculations Both of them show that 25 goes with 65 and 32 goes with 72 Both show that the temperatures and chirps per 15 seconds are going up The table shows that the temp is always 40 more than the chirps

