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Prerequisite Resources 
The Texas Instruments website provides for a series of free, online, self-paced learning modules titled 

“10 Minutes of Code”.  Students can work through these modules at their own pace, teacher notes are also 

available.  For this activity it is recommended that students have completed Unit 3 – Conditional 

Statements and Unit 4 – Loops.  

https://education.ti.com/en-au/activities/ti-codes/nspire/10-minutes  

Finding Factors 

There are many ways to determine the quantity of factors for a specified number.  The most common 

method is to test the divisibility for every number up to the specified number, however this is a slow 

process and many of the numbers being tested are not necessary.   

Example:   Determine the quantity of factors for the number 45. 

45  1 = 45 Factor  45  2 = 24 rem 1 Not a factor 45  3 = 15 Factor  

Testing from these first three numbers provides some possible short cuts.   

 45 is not divisible by 2, therefore it cannot be even.  If the number is not even there is no purpose 

checking divisibility by 4, 6, 8 … An efficient algorithm (program) should therefore check first to see 

if the number being tested is even, potentially removing 50% of future testing.  

 45 is divisible by 3 since: 3 x 15 = 45.  With the exception of perfect squares, factors occur in pairs 

so once one number in the pair has been identified the other can be found by division rather than 

additional searching.  This approach means that a much smaller testing threshold can be 

established. 

 45  1 = 45   Factor  45  2 = 24 rem 1 Not a factor 45  3 = 15 Factor  

 45  4 = 11 rem 1   Not a factor 45  5 = 9 Factor  45  6 = 7 rem 3 Not a factor 

45  7 = 6 rem 2   Not a factor     

 In the example above no further testing is required as the divisor (7) is now greater than the 

quotient (6).  Further increases in the divisor will only continue to reduce the quotient locating 

factor partners that have already been established.  The threshold at which this occurs is the 

square-root of the original number. 45 6.71 , so searching for factors of 45 can cease at 6.  

https://education.ti.com/en-au/activities/ti-codes/nspire/10-minutes


  

  Texas Instruments 2017. You may copy, communicate and modify this material for non-commercial educational purposes 
provided all acknowledgements associated with this material are maintained. 

Author:  P.Fox 

 
 

 
 

2  Fast Facts  

Instructions  
Open the TI-Nspire document:  Fast Facts.  

Navigate to page 1.2: “factorcount”. 

This is the program listing for the “factorcount” program that 

‘requests’ a number and returns the total number of factors for 

that number.  

Navigate to page 1.3, use the [Var] key to access the factorcount 

program, select and run the program.  When prompted enter the 

number 360.  The program should return: 24, signifying there are 

24 factors for the number 360.  

 

 

Question: 1.  

Use a stop watch to record how long the calculator takes to count the quantity of factors for each 

of the following numbers: 

Number 100 101 1,000 1,001 10,000 10,001 100,000 100,001 

Time < 1.0s <1.0s 1 to 2s 1 to 2s  15s  15s  150s  150s 

Answers will vary slightly depending on student response times.  Students should notice that an 

increase in a multiple of 10 for the original number also increases the time for the calculator 

program to run by a similar ratio.  

Return to page 1.2 and edit the program.  The required edits and 

changes have been highlighted.  

When you have finished editing press Ctrl + B to save and compile 

the programming code.  

Return to page 1.3 so the program can be run again and tested. 

 

Question: 2.  

What is the “IF” statement checking when it tests mod(n,2)=0? 

“mod” performs ‘modular’ arithmetic, better known to students as ‘remainder’.  Mod(n,2) returns 

the remainder when the quantity ‘n’ is divided by 2.  If the result is zero the original number is a 

multiple of 2, an even number.  [If it is not even, then it must be odd is implied.]  

Question: 3.  

The FOR syntax is:  For variable, start, finish, step.  What possible values can the step size take 

according to the previous IF statement? 

If the original number is even ( … mod(n,2)=0 … ) the step size is 1 ( … s:=1 …).  This means that 

every number will be checked for divisibility.  

If the original number is odd, ( … Else … ) the step size is 2 ( … s:=2 … ).  This means every second 

number, starting at 1 ( … 1, 3, 5, 7 … ) will be tested for divisibility. 
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3  Fast Facts  

Question: 4.  

Run the program and check how long it takes to count the factors for the numbers in Table 1 of 

Question 1, compare your results with those obtained previously.  

Number 100 101 1,000 1,001 10,000 10,001 100,000 100,001 

Time < 1.0s <1.0s 1 to 2s  1s*  15s  8s  150s  75s 

* Students may not detect the time difference for this calculation.  

Students should notice that the odd numbers, particularly the larger ones run in approximately half 

the time as only every second number is being tested.  

Further algorithms to bypass other multiples of primes would make the program faster again, 

however it is much hard to come up with a simple rule for the step size.   

Return to page 1.2 and edit the highlighted section once again.  

The “INT” statement removes the decimal values from a 

calculation guaranteeing that the FOR loop has a whole number to 

count up to.  

To understand the inclusion of the Square-root calculation, read 

back through the introduction “Finding Factors”  

Notice also that the factor count result is doubled. 
 

Question: 5.  

Run the program and check how long it takes to count the factors of 10,001 and 10,000.  Compare 

your results to those obtained in Question 1.   

Number 100 101 1,000 1,001 10,000 10,001 100,000 100,001 

Time < 1.0s <1.0s <1.0s <1.0s <1.0s <1.0s <2.0s <1.0s 

Most of these times are virtually impossible to detect accurately as the counting algorithm is now 

too fast for students to accurately measure.  Students should acknowledge that this new algorithm 

(program) is significantly more efficient! 

Question: 6.  

An important aspect of writing code is to test it, to make sure it is working properly.  Write down 

the factors for each of the following numbers:  18, 32, 37, 45, 50, 100 and 144.  Check if your 

program returns the correct quantity of factors for each number.  If there are any discrepancies, 

suggest a possible cause.  

According to the program:  
18 … has 6 factors: {1, 2, 3, 6, 9, 18} 
32 … has 6 factors: {1, 2, 4, 8, 16, 32} 
37 … has 2 factors: {1, 37} 
45 … has 6 factors: {1, 3, 5, 9, 15, 45} 
50 … has 6 factors: {1, 2, 5, 10, 25, 50} 
100 … has 10 factors … this however is incorrect: {1, 2, 4, 5, 10, 20, 25, 50, 100} 
144 … has 16 factors … this is also incorrect: {1, 2, 3, 4, 6, 8, 9, 12, 16, 148, 24, 36, 48, 72, 144} 

 Students must identify that 100 and 144 have the incorrect quantity of factors, they however may 
not realise the reason, both numbers perfect squares!  From a programming perspective the 
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4  Fast Facts  

question is designed to highlight the importance of the ‘testing phase’, to ensure your program is 
doing what it is designed to do, accurately and efficiently count factors.   
The problem is that doubling the number of factors found up to and including the square-root of 
the original number duplicates counting the square-root of the number.  The time efficiency of the 
algorithm however makes consideration of exceptions worthwhile.  A small algorithm can correct 
the factor count by testing if the original number was a perfect square.   
 

Return to page 1.2 and edit the highlighted section once again.  

This final check corrects a problem that occurs for a special group 

of numbers, the inclusion of this final step however does not add 

much computational time to the program because it is not 

contained within the search loop and is therefore executed just 

one time at the end of the program.   

 

Question: 7.  

Write down at least 10 different numbers.  Write down the factors for each of the numbers and use 

your program to check the factor count.  

Answers will vary depending on the numbers chosen.  If students realise that the only problem with 

the previous factor count was to do with perfect squares, they should test a considerable 

proportion of perfect squares.   

Question: 8.  

The number 21 is the product of exactly two prime numbers:  7 and 3. 

a. Write down the factors of 21.   {1, 3, 7, 21} 

b. The number: 6,397 is prime, so too 9,397.  The product of these two prime numbers is 

equal to: 60112609.  (60 million, 112 thousand, 609)  Predict how many factors there are 

for 60112609 then use the FactorCount program to check the quantity of factors.  

Prediction:  4 factors: {1, 6397, 9397, 60112609} 

Calculator Program:  4 factors … and counted in less than 30 seconds! 

c. The number 67,629,137 is prime, so too is 73,939,133.  The product of these two prime 

numbers is: 5,000,439,755,318,221.  (5 Quadrillion, 439 billion, 755 million, 318 thousand 

and 221).  Predict the quantity of factors for this very large number.   

Do NOT test this with your calculator program! 

This number is of the order 108 times bigger than the one in part B.  It would take the 

calculator approximately 3 days to return a result.  Students however can reason, using 

factor trees that the result would consist of 4 factors:  {1, 67629137, 73939133, 5000439….} 

Note:  If students do attempt to run the program on this very large number, and they 

probably will … , hold down the ON key for approximately 3 seconds to halt the program.  
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5  Fast Facts  

 

 

 

Encryption techniques used by banks and other organisations that transmit private or secure 
data over the internet rely on the fact that it is very time consuming to find the factors of a very 
large number, particularly where that large number is the product of very large prime numbers.  
As factorising techniques are improved and computer processing power increases, the prime 
numbers being used for secure transactions must get bigger and bigger in order to keep your 
data safe.   

 


