\qquad
\qquad

Problem 1 - A Segment and its Perpendicular Bisector

The perpendicular bisector of a segment is a line, ray, or segment that is:

- perpendicular to the segment and
- intersects the segment at its midpoint.

On page 1.3, construct $\overline{A B}$ and its perpendicular bisector $\overline{P X}$ such that $\overline{A B}$ and $\overline{P X}$ intersect at point X.

1. Record your measurements found on page 1.3:

$$
\begin{array}{ll}
\mathrm{m} \angle P X A= & A X= \\
\mathrm{m} \angle P X B= & B X= \\
\hline
\end{array}
$$

2. Do these measurements support the two-part definition of a perpendicular bisector? Explain.

Problem 2 - The Perpendicular Bisector Theorem

On page 2.2, draw $\overline{P A}$ and $\overline{P B}$. Measure the lengths of these two segments.
3. Record the measurements for a few locations of point P :

Length of $\overline{\overline{P A}}$	Length of $\overline{\overline{P B}}$

4. Complete this conjecture:

Any point on the perpendicular bisector of a line segment is \qquad from the endpoints of the segment.
5. What kind of triangle is $\triangle A B P$? How do you know?

Points On A Perpendicular Bisector

Problem 3 - Isosceles Triangles and Kites

On page 3.2, draw point Q on the perpendicular bisector such that it is on the opposite side of $\overline{A B}$ as point P. Construct $\overline{A Q}$ and $\overline{B Q}$, and measure and display the following lengths: $A P, B P, A Q$, and $B Q$.
6. Name two isosceles triangles in the diagram on page 3.2.
7. Identify the pairs of congruent sides of kite $A P B Q$.
\qquad
8. Describe a property of kites using the word "equidistant."
9. Complete this conjecture:

In a kite, \qquad is the perpendicular bisector of \qquad .
10. Drag points P and Q to the same side of $\overline{A B}$ to create a concave kite.

Do the properties of kites still hold?

Problem 4 - Chords of a Circle

On page 4.2, construct a circle with center P and a chord $\overline{A B}$.
Then construct the perpendicular bisector of $\overline{A B}$.
11. Complete this conjecture:

In a circle, the perpendicular bisector of any chord \qquad .
12. Describe a property of circles using the word "equidistant."

