Problem 1 - A Segment and its Perpendicular Bisector

The **perpendicular bisector** of a segment is a line, ray, or segment that is:

- · perpendicular to the segment and
- intersects the segment at its midpoint.

On page 1.3, construct \overline{AB} and its perpendicular bisector \overline{PX} such that \overline{AB} and \overline{PX} intersect at point X.

1. Record your measurements found on page 1.3:

m∠*PXA* = _____

AX =

m∠*PXB* =

BX = _____

2. Do these measurements support the two-part definition of a perpendicular bisector? Explain.

Problem 2 – The Perpendicular Bisector Theorem

On page 2.2, draw \overline{PA} and \overline{PB} . Measure the lengths of these two segments.

3. Record the measurements for a few locations of point *P*:

Length of PA	Length of $\overline{\textit{PB}}$

4. Complete this conjecture:

Any point on the perpendicular bisector of a line segment is ______ from the endpoints of the segment.

5. What kind of triangle is $\triangle ABP$? How do you know?

🦊 Points On A Perpendicular Bisector

6. Name two isosceles triangles in the diagram on page 3.2.

Problem 3 – Isosceles Triangles and Kites

On page 3.2, draw point Q on the perpendicular bisector such that it is on the opposite side of \overline{AB} as point P. Construct \overline{AQ} and \overline{BQ} , and measure and display the following lengths: AP, BP, AQ, and BQ.

7. Identify the pairs of congruent sides of kite APBQ.
8. Describe a property of kites using the word "equidistant."
9. Complete this conjecture:
In a kite, is the perpendicular bisector of
10. Drag points P and Q to the same side of AB to create a concave kite. Do the properties of kites still hold?
Problem 4 – Chords of a Circle
On page 4.2, construct a circle with center P and a chord \overline{AB} . Then construct the perpendicular bisector of \overline{AB} .
11. Complete this conjecture:
In a circle, the perpendicular bisector of any chord
12. Describe a property of circles using the word "equidistant."