

Derive Summation Formulas Creatively

TI PROFESSIONAL DEVELOPMENT

TEACHER NOTES AND SOLUTIONS

1. We are going to derive the	2. First enter the natural	3. Press + to access the help		
formula for the sum of the first n	numbers from 1 to 10 into list L1	screen and type the following:		
perfect squares. That is:	using the seq(command. To access it: 2nd 0 In (for 'S'), scroll down to seq(.	CATALOG HELP seq(X,X,1,10,1)		
$1 + 4 + 9 + \dots + n^2 = ?$	NORMAL FLOAT AUTO REAL RADIAN MP OF CATALOG 2-SampTInt 2-SampTTest 2-SampZInt(2-SampZTest(Scatter Sci Select(Send(>seq((expression, variable , begin, end[,increment]) PASTE ESC Press trace to PASTE. HORMAL FLOAT AUTO REAL RADIAN MP Seq(X,X,1,10,1)		
4. Store this list into L1: sto→ 2nd 1 enter	5. View the list in L1: stat enter	6. Place the squares of the values in list L1 into list L2.		
NORMAL FLOAT AUTO REAL RADIAN MP	NORMAL FLOAT AUTO REAL RADIAN MP L1	Go to the very top of list L2 and enter the following: 2nd 1 x² enter L2 L3 L4 L5 2 1 1 2		
7. Place the cumulative sum of the perfect squares listed in list L2 into list L3. Go to the very top of list L3 and enter the following: 2nd stat 6 2nd 2 enter	8. The results are listed below. NORMAL FLOAT AUTO REAL RADIAN MP	9. Plot list L3 versus list L1 using an appropriate window. 2nd Y= enter. Set as shown below: NORMAL FLOAT AUTO REAL RADIAN MP PRESS K() OR (>) TO SELECT AN OPTION On Off Type:		

1

Derive Summation Formulas Creatively

TI PROFESSIONAL DEVELOPMENT

TEACHER NOTES AND SOLUTIONS

10. Set the window as shown below:

WINDOW

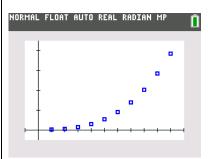
Xmin=-1

Xmax=11

Xscl=1

Ymin=-50

Ymax=450


Yscl=100

Xres=1

AX=0.04545454545455

TraceStep=0.090909090909...

11. Press graph.

What type of curve can model this data?

Cubic, other answers possible

12. To save time, we will model with a cubic regression equation. stat \[\bar\] \[\bar6 \] .

Set as shown below:

NORMAL FLOAT AUTO REAL RADIAN MP

CubicRe9

Xlist:L1 Ylist:L3 FreqList: Store RegF(

Store RegEQ:Y2 Calculate

13. Press enter

NORMAL FLOAT AUTO REAL RADIAN MP

CubicReg

y=ax³+bx²+cx+d a=0.3333333333 b=0.5 c=0.1666666667 d=0 14. Notice that the decimals for a, b, and c can be written as common fractions. Write those values below:

$$a = \frac{1}{3}$$
 $b = \frac{1}{2}$ $c = \frac{1}{6}$

Rewrite the regression equation using the fractions instead of the decimals.

$$y = \frac{1}{3}x^3 + \frac{1}{2}x^2 + \frac{1}{6}x$$

15. We can check that this regression equation in Y2 is correct. Into the top of list L4, type L4=Y2(L1)

NORMAL	FLOAT AL	JTO REAL	RADIAN	MP	
L1	L2	Lз	L4	L5	4
1	1	1	1		
1 2 3	4	5	5		
3	9	14	14		
4	16	30 55	30 55		
5 6	25	55	55		
6	36	91	91		
7	49	140	140		
8	64	204	204		
9	81	285	285		
10	100	385	385		ı
					L

L4(1)=0.99999999999168

16. Using the equation in number 14, use some algebra to write the expression as a single rational expression and in factored form.

$$y = \frac{2}{6}x^3 + \frac{3}{6}x^2 + \frac{1}{6}x$$

$$y = \frac{1}{6}x(2x^2 + 3x + 1)$$

$$y = \frac{1}{6}x(2x + 1)(x + 1)$$

$$y = \frac{x(2x + 1)(x + 1)}{6}$$

17. With your teacher's assistance, write this as a formula using proper mathematical notation.

$$1 + 4 + 9 + ... + n^{2}$$

$$= \sum_{i=1}^{n} (i^{2})$$

$$= \frac{n(2n+1)(n+1)}{6}$$

18. Other summation formulas that you can derive the summation formulas include:

$$1 + 2 + 3 + ... + n = ?$$

$$1^3 + 2^3 + 3^3 + \dots + n^3 = ?$$

$$2 + 4 + 6 + \dots + 2n = ?$$

$$3 + 6 + 9 + \dots + 3n = ?$$

$$1 + 3 + 5 + \dots + (2n - 1) = ?$$