\qquad
\qquad

In this adventure, you will run a radio-controlled car at several different weights, recording the time of each run.

	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6
Vehicle Weight in oz						
Timer \#1						
Timer \#2						
Timer \#3						
Time Average in sec.						
Speed $\left(\frac{d}{t}\right)$ (in./sec)						

Problem 1

- Sketch the plot of time with respect to weight.
- What is represented on the x-axis? the y-axis?

- Fill in the blank: As weight increased, time \qquad .

Problem 2

- Sketch the plot of speed with respect to weight.
- What is represented on the x-axis? the y-axis?

- Fill in the blank: As weight increased, speed \qquad .
- What would happen if you made the car ridiculously heavy?

Extension

Pick some weight you have not tried and test it to see if it attains the speed you predicted with your model.
Chosen weight \qquad
Predicted speed \qquad
Actual speed \qquad

