Newton's Law of Cooling and The Calculus Behind It

Brenda Batten, T^{3} Instructor

The rate at which an object's temperature is changing at any given time is proportional to the difference between its temperature and the temperature of the surrounding medium.
$\mathrm{T}=$ Temperature of the cooling (or warming) object
$\mathrm{t}=$ time in seconds since the first reading
$\mathrm{T}_{\mathrm{S}}=$ Temperature of surrounding medium

A. Using Calculus to Derive the Model

This is an example of exponential growth and decay as follows:

$$
\begin{aligned}
& \frac{d y}{d t}=K y \\
& \frac{1}{y} d y=K d t \\
& \int \frac{1}{y} d y=\int k d t \\
& \ln |y|=K_{t}+C \\
&|y|=e^{K t+c} \\
&|y|=e^{\mathrm{Kt}} \cdot \mathrm{e}^{\mathrm{C}} \\
& \text { at } \mathrm{t}=0, \mathrm{y}=\mathrm{y}_{0} \quad \mathrm{y} \\
&\left|\mathrm{y}_{0}\right|=\mathrm{e}^{0} \cdot \mathrm{e}^{\mathrm{c}}=\mathrm{e}^{\mathrm{c}} \quad=>\mathrm{y}_{0}= \pm \mathrm{e}^{\mathrm{c}} \\
& \mathrm{y}=\mathrm{y}_{0} \cdot \mathrm{e}^{\mathrm{Kt}}
\end{aligned}
$$

Let a chilled object warm (or a hot object cool) to room temperature. Then by Newton's Law, the rate at which the object's temperature is changing at any given time is proportional to the difference between its temperature and the temperature of the surrounding medium. Consider the following differential equation:

$$
\frac{d y}{d t}=\frac{d\left(T-T_{S}\right)}{d t}=\frac{d T}{d t}-\frac{d T_{S}}{d t}=\frac{d T}{d t}-0=\frac{d T}{d t}=k\left(T-T_{S}\right)
$$

Let $\quad \mathrm{y}=\mathrm{T}_{\mathrm{S}}-\mathrm{T} \quad$ or $\mathrm{T}-\mathrm{T}_{\mathrm{S}}$, whichever is a positive quantity.
This quantity approaches zero since the temperature of the object approaches the ambient temperature, i.e. the temperature of the surrounding air.
Using $y=T_{S}-T$ and $y_{0}=T_{S}-T_{0}$, the equation $y=y_{0} . e^{K t}$ becomes $T_{S}-T=\left(T_{S}-T_{0}\right) e^{K T}$
The exponential model, then, models the quantity y, which is defined to be the difference between the room temperature and the temperature of the cooling (or warming) object at any given time.

B. Collecting the Data

Temperature data can be stored in the TI-89 using the CBL program CHILL89. It stores time (in seconds) in List 1, 11, and the temperature readings (in Fahrenheit) in List 2, 12.
[2nd] [-] VAR-LINK: Highlight CHILL89
[ENTER]: Pastes program name onto the command line of the home screen.
[)]: Close parenthesis
[ENTER]

First use the CBL to determine the room temperature, T_{S}. Then collect temperature data following the directions within the program. Place the thermometer in ice (or hot) water for a few seconds. Then remove the thermometer and take data readings as it warms (or cools) to room temperature. Finally, from the menu, select QUIT, then [ENTER] to return to the home screen.
\diamond [F3] Graph
Notice that two Plots have been defined. In Plot 1, $x=$ List 1, time in seconds, and $y=$ List 2, temperature of the warming (or cooling) object. In Plot 2 , $x=$ List 3 , time in seconds and $y=$ List 4 , room temperature.
[F3]: Trace on plot 2 to determine room temperature, T_{s}.
$\diamond[\mathrm{F} 1] \quad \mathrm{Y}=: \quad$ Let $\mathrm{y} 1=\mathrm{T}_{\mathrm{S}}$.
\diamond [F3] Graph

C. Model the Data

In order to model the data, use the exponential equation $y=a * b^{x}$. Again, the positive quantity y represents the differences of room temperature and temperature of the warming (or cooling) object at any given time.

For example, using temperatures of ice water warming to room temperature, let $y=T_{S}-T$, so that y is a positive quantity. (For temperature of hot water which cools to room temperature, let $\mathrm{y}=\mathrm{T}-\mathrm{T}_{\mathrm{S}}$ and proceed accordingly.)

Newton's Law of Cooling
page 2
Brenda Batten

1. Calculate Differences

View the Data:
[APPS] 6: Data/Matrix Editor
1: Current
c1 contains List 1, l1, time in seconds
c2 contains List 2, 12, temperature data.
In the Data/Matrix Editor, let $y=T_{S}-T$, for ice water warming to room temperature define $\mathrm{c} 3=\mathrm{T}_{\mathrm{S}}-\mathrm{c} 2$, since T is stored in c 2 .

[F2] Plot Setup:
Highlight Plot 3.
[F1] Define:
Plot Type:
Scatter
Mark: Dot
x: c1 y: c3
Freq and Categories? No
[Enter=Save]

\diamond [F3] Graph
Newton’s Law of Cooling
[Enter] Return to Data/Matrix Editor

$\diamond[\mathrm{F} 1] \mathrm{Y}=$
[F4] Deselect Plots 1 and 2

[APPS] 6: Data/Matrix Editor
1: Current
Brenda Batten

2. Calculate Exponential Regression Equation for Differences

From the Data/Matrix Editor, use the Calculate menu to calculate the regression equation.

[F5] Calculate Type:
4: ExpReg: $x=c 1, y=c 3 \quad$ Store RegEQ to $y 3(x)$

Freq \& Categories: NO
[Enter=Save] [Enter=OK]
\diamond [F3] Graph [F3] Trace

3. Derive the Equation that Models the Original Data

The quantity we have modeled is for the differences:
y3 =

$$
\mathrm{c} 3 \quad=\mathrm{T}_{\mathrm{S}}-\mathrm{c} 2 .
$$

To retrieve the original data, solve for c2.

$$
\begin{aligned}
& \mathrm{y} 3 \quad=\mathrm{a} \cdot \mathrm{~b}^{\mathrm{x}} \\
& \mathrm{~T}_{\mathrm{S}}-\mathrm{c} 2=\left(\mathrm{T}_{\mathrm{S}}-\mathrm{T}_{0}\right) \mathrm{e}^{\mathrm{Kt}} \quad \text { which is stored in } \mathrm{y} 3 . \\
& \mathrm{c} 2
\end{aligned}=\mathrm{T}_{\mathrm{S}}-\left(\mathrm{T}_{\mathrm{S}}-\mathrm{T}_{0}\right) \mathrm{e}^{\mathrm{Kt}} .
$$

$\checkmark \mathrm{y} 1=68$		
$\checkmark y 2=68-y 3(x)$		
$y 3=31.346537573798 \cdot(.9924)$		
ㅂ1 $1(x)=68$		
MAlN	Ríd futa	FUNC

[F4] Select only Plot 1, y1, y2
\diamond [F1] Y=
Define y2 $=\mathrm{T}_{\mathrm{S}}-\mathrm{y} 3(\mathrm{x})$.

[F3] Graph y3 models the data collected.

4. Applications of Modeling

One application of modeling data is to extrapolate information that is beyond the domain of the collected data. For example, this CBL program collects data over a time period of 98 seconds. Our model, however, can give us a prediction of what the temperature will be at any point in time.

Newton's Law of Cooling
page 4
Brenda Batten

To illustrate this, expand the viewing window of the plotted graph.

\diamond [F2] Window:
xmin $=-50$ and $x m a x=200$

\diamond [F3] Graph

[F3] Trace on graph of y2
180 [ENTER]

Move the cursor up or down until you are tracing on the graph of y2. Then enter 180. This moves the cursor to the position $\mathrm{t}=180$ seconds.

What will the temperature be 3 minutes after the probe was removed from the ice water? The y coordinate gives the predicted temperature of the probe at that time according to the model we have derived.

The CBL program "Chill89" is shown below for your reference. It is an adaptation of "Chill" from the workbook "Real World Math with the CBL System". The portion of this program for seeing directions is not included. Therefore, do not choose the menu selection 3: Collect (Dir). Menu selection 4: Use Sample gives the data that was used in this handout. Choosing this option stores data in lists $1,2,3$, and 4 as discussed in the handout above.
()

Prgm
DelVar sysData
©clear various screens that will be used
C1rHome: C1rIO
C1rGraph: C1rDraw
Loca1 premode
getMode("ALL") \rightarrow premode
©Standard calc setup
Plots0ff
Fn0ff
setMode(\{ "Graph", "Function", "Exponentia1
Format", "Norma1", "Exact/Approx", "Approximate", "Split
Screen", "Ful1", "Display Digits", "Float"\})
setGraph("Coordinates", "Rect")
setGraph("GraphOrder", "Seq")
setGraph("Grid", "Off")
setGraph("Labe1s", "Off")
setGraph("Axes", "Off")
$\emptyset \rightarrow x m i n$
$159 \rightarrow$ xmax
-99 \rightarrow ymin
Ø \rightarrow ymax
©The cover page
PxiLine $3,3,3,155$
PxiLine $3,155,19,155$
PxiLine 19,155,19,3
Pxiline 19,3,3,3
PxlText "Real-World Math with CBL",8,6
Px1Text "Texas Instruments",27,3Ø
Px1Text "CHILL OUT (v2.ø)", 38,4Ø
PxiText "(Activity \#10)",63,41
Px1Text "Press [ENTER] to continue",53,7
Pause
C1rHome: C1rGraph
Lb1 menu
C1rI0:C1rDraw: C1rHome
Local opt,i,status,1inkmsg
1 \rightarrow opt
Disp ""," *** OPTIONS *** ",""
PopUp \{"Room Temp","Collect (No Dir)","Collect (Dir)","Use
sample", "QUIT" $\}$, opt
If opt=5 Then: Goto end:EndIf
If opt=4 Then
©DATA1Ø
Goto data1ø
EndIf
If opt=3 Then
Disp ""," ***This option not available***"
Goto menu
EndIf
If opt=2 Then
©clear various screens that will be used
C1rHome:C1rIO
C1rDraw
Goto part2
EndIf

If opt=1 Then
©clear various screens that will be used
C1rHome:C1rIO
C1rDraw
$-25 \rightarrow y m i n$
$125 \rightarrow y$ max
$25 \rightarrow$ ysc 1
$-5 \rightarrow x$ min
$25 \rightarrow x$ max
$5 \rightarrow x \operatorname{cc} 1$
Send $\quad\{1, \emptyset\}$
Send $\{1,1,11\}$
newList $(2 \emptyset) \rightarrow 14$

```
Disp "Collect room temp"
Disp "Hit [ENTER]"
Pause
ClrIO
C1rHome:C1rGraph
C1rDraw
Px1Text "TEMP(F)",3,2
Px1Text "T(S)",58,125
Plots0ff
Send {3,\emptyset.5,-1,\emptyset}
For i,1,2\emptyset,1
Get 14[i]
PtOn i,14[i]
EndFor
seq(n, n, Ø, 19,1)->13
Lb1 at
Fn0ff
setMode("Graph", "Function")
setGraph("Axes","On")
ClrIO
-25->ymin
125 }->\mathrm{ ymax
25->ysc1
-2\emptyset->xmin
1Ø\emptyset->xmax
10->xsc1
NewData roomdat,13,14
NewPlot 2,2,13,14,,,,5
DispG
Px1Text "TEMP(F)",3,2
Px1Text "T(S)",53,12\emptyset
Pause
StoGDB gdb5
\emptyset->u
\emptyset->V
Goto menu
EndIf
If opt=2 Then
@clear various screens that will be used
ClrHome:C1rIO
C1rGraph:ClrDraw
1->1 inkmsg
ClrIO
Goto linkchk
Goto menu
EndIf
Lb1 part2
@clear various screens that will be used
C1rHome:C1rIO
C1rGraph:C1rDraw
-25->ymin
```

```
125->ymax
25->ysc1
-2\emptyset->xmin
10\emptyset->xmax
10->xsc1
Send {1,\emptyset}
Send {1,1,11}
newList(99)->12
Disp "Place the probe"
Disp "in hot or cold water"
Disp "for about a minute."
Disp "","Hit [ENTER]"
Pause
ClrIO
Disp "Remove the probe"
Disp " from the cup."
Disp ""
Disp "Hit [ENTER] to graph"
Disp "temperature."
Pause
ClrDraw
Px1Text "TEMP(F)",3,2
Px1Text "T(S)",58,125
Send {3,Ø.5,-1,\emptyset}
For i,1,99,1
Get 12[i]
PtOn i,12[i]
EndFor
seq(n, n, \emptyset, 98, 1) ) 11
Lb1 as
Fn0ff
setMode("Graph", "Function")
setGraph("Axes","On")
ClrIO
-25->ymin
125->ymax
25->ysc1
-2\emptyset->xmin
1\emptyset\emptyset->xmax
10->xsc1
NewData chilldat,11,12
NewPlot 1,1,11,12,,,,5
DispG
Px1Text "TEMP(F)",3,2
Px1Text "T(S)",58,12\emptyset
Pause
StoGDB gdb6
\emptyset->u
\emptyset \rightarrow V
Goto menu
Goto end
Lb1 data1\emptyset
{\emptyset,1,2,3,4,5,6,7,8,9,1\emptyset,11,12,13,14,15,16,17,18,19,2\emptyset, 21, 22, 23, 24, 25, 26
, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,39,40, 41, 42, 43,44, 45, 46, 47, 48, 49,5
```

```
Ø,51,52,53,54,55,56,57,58,59,6Ø,61,62,63,64,65,66,67,68,69,70,71,72,73,
74,75,76,77,78,79,8\emptyset, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,94, 95,96,97
,98}->11
{36.464,36.355999999999,36.553999999999,37.094,37.364,37.31,37.562,38.1
Ø2,38.Ø47999999,9999,38.3,38.57,38.822,39.092,39.343999999999,39.56,39.
812,40.\emptyset82,4\emptyset.334,4\emptyset.586,40.838,41.Ø9,41.342,41.612,41.864,42.116,42.11
6,42.\emptyset62,42.314,42.854,43.1Ø6,43.358,43.322,43.556,43.8Ø8,43.8Ø8,44.06,
44.312,44.546,44.546,44.798,45.05,45.283999999999,45.536,45.536,45.77,4
6.\emptyset\emptyset4,46.\emptyset\emptyset4,46.255999999998,46.49,46.742,46.742,46.976,46.976,47.21,47
.462,47.696,47.696,47.93,48.164,48.164,48.398,48.398,48.38,48.884,48.88
4,49.118,48.847999999999,49.352,49.586,49.586,49.82,49.82,5\emptyset.\emptyset54,5\emptyset.\emptyset54
,50.27,50.504,50.504,50.486,50.486,50.972,50.972,51.2Ø6,50.953999999999
,51.188,51.188,51.4Ø4,51.4Ø4,51.637999999999,51.872,51.872,51.872,52.1Ø
6,52.1\emptyset6,52.322,52.322,52.556,52.79,52.79}->12
{\emptyset,1,2,3,4,5,6,7, 8,9,1\emptyset,11,12,13,14,15,16,17,18,19}->13
{68.36,68.162,68.179999999999,68.179999999999,67.982,67.982,68.17999999
9999,68.179999999999,67.982,67.982,67.982,67.982,67.982,68.197999999999
,68.197999999999,68.197999999999,68.197999999999,68,68,68}->14
Fn0ff
setMode("Graph", "Function")
setGraph("Axes", "On")
ClrIO
-25->ymin
125->ymax
25->ysc1
-2\emptyset->xmin
1Ø\emptyset->xmax
10->xsc1
NewData sample,11,12,13,14
NewPlot 1,1,11,12,,,,5
NewPlot 2,1,13,14,,,,5
DispG
Px1Text "TEMP(F)",3,2
Px1Text "T(S)",58,120
Pause
StoGDB gdb6
\emptyset->u
\emptyset \rightarrow V
Goto menu
Goto end
Lb1 end
setMode(premode)
setMode("Split 1 App","Window Editor")
setMode("Split 1 App","Home")
EndPrgm
```

