Activity 13

Investigating One Definition of Derivative

Given two points, the slope of the line that passes through these two points is found by computing $\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$. One definition of the derivative is given as $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{(x+h)-x}$. When $h=0$, the fraction is undefined. What happens as h gets very close to zero?

Numerical Exploration

1. Open a new TI InterActive! document. Title this document Definition of Derivative. Add your name and the date.
2. Select Math Box and define the function f as $\mathrm{f}(\mathrm{x}):=\mathrm{x}^{2}+1$.
3. Find the slope of the secant line that contains the points $(1, f(1))$, and (2, f(2)).
$m=$ \qquad
4. In a math box define h to have a value of 1 , by typing $h:=1$.
5. In a math box define $m s$ as the slope of the secant line that contains the points $(1, f(1))$, and $(1+h, f(1+h))$, by typing ms: $=\frac{\mathrm{f}(1+\mathrm{h})-\mathrm{f}(1)}{(1+\mathrm{h})-1}$.
6. What is true of $(2, f(2))$. and $(1+h, f(1+h))$ when $h=1$?
7. Enter the coordinates of the two points on the secant line and the slope, $m s$, in the table below. You can find the value of $f(x+h)$ by typing $f(\mathbf{x}+\mathbf{h})$ in a math box.
8. Double-click on $\mathrm{h}:=1$ and change to $\mathrm{h}:=.05$. Record the slope, $m s$ of the secant line and the coordinates of the two points that contains the points $(1, \mathrm{f}(1))$, and $(1+h, \mathrm{f}(1+h))$ when $h=0.5$.
9. Repeat step 8 , changing h to $\mathbf{0 . 1}, \mathbf{0 . 0 1},-\mathbf{1},-\mathbf{0 . 5},-\mathbf{0 . 1}$, and $\mathbf{- 0 . 0 1}$. Record this information in the table below.

	Point 1		Point 2		
h	x	$f(x)$	$x+h$	$f(x+h)$	$m s$
1	1		2		
0.5	1		1.5		
0.1	1				
0.01	1				
\vdots					
-0.01	1				
-0.1	1				
-0.5	1				
-1	1				

Numerical Analysis

1. As $x+h$ gets closer to x, what is happening to h ?
\qquad
2. As $x+h$ gets closer to x, what is happening to the slope?
\qquad
3. As $h \rightarrow 0$, the value of the slope appears to be approaching \qquad ? In a math box, Define $m t$ to be this value.

Graphical Exploration

1. Double-click on $\mathrm{h}:=-1$ and redefine $\mathrm{h}:=1$.
2. In a math box, define the function g as the equation of the secant line $\mathrm{g}(\mathrm{x}):=\mathrm{ms} *(\mathrm{x}-1)+\mathrm{f}(1)$.
3. In math boxes, store
$\{1,1+h\} \rightarrow \mathrm{L} 1$ and
$\{\mathrm{f}(1), \mathrm{f}(1+h)\} \rightarrow \mathrm{L} 2$.
4. Graph $f(x), g(x)$, and the scatter plot L1, L2. Select Graph.
 and enter $f(x)$ in $y \mathbf{l}(x):=, g(x)$ in $y 2(x):=$. Click on the Stat Plots tab and enter L1 and L2 for the first plot. Close the graph by clicking on Save to Document产。

5. Sketch $f(x), g(x)$, and the scatter plot L1, L2 on the provided grid.

Numerical Analysis

1. Double-click on $\mathrm{h}:=1$. Change this value to 0.5 . How does this change the graph?
2. Sketch the new $g(x)$ and the scatter plot L1, L2 on the same grid.
3. Double-click on the graph. Enter the equation of the line tangent to $f(x)$ at $x=1$ by defining $\mathrm{y} 3(\mathrm{x}):=\mathrm{mt} *(\mathrm{x}-1)+\mathrm{f}(1)$.
4. Repeat step 1 for each of the following h-values: $0.1,0.01,-1,-0.5,-0.1$, and -0.01 . As $h \rightarrow 0$, what is happening to the secant line?
\qquad
5. How does t compare to g when h is very small?
6. Save this document as deriv.tii. Print a copy of this document.

Additional Exercises

Use the previous steps to investigate each of the following.

1. Use the definition of derivative $\lim _{h \rightarrow 0} \frac{\mathrm{f}(x+h)-\mathrm{f}(x)}{(x+h)-x}$ to approximate the numerical derivative of $f(x)=x^{2}+1$ at $x=2$. Sketch the function and the secant lines. Determine the slope of the tangent line on the provided grid.

	Point 1		Point 2		
h	x	$f(x)$	$x+h$	$f(x+h)$	m
1	2		3		
0.5	2		2.5		
0.1	2				
0.01	2				
\vdots					
-0.01	2				
-0.1	2				
-0.5	2				
-1	2				

$m t=$ \qquad
2. Use the definition of derivative $\lim _{h \rightarrow 0} \frac{\mathrm{f}(x+h)-\mathrm{f}(x)}{(x+h)-x}$ to approximate the numerical derivative of $f(x)=x^{2}+1$ at $x=-1$. Sketch the function and the secant lines. Determine the slope of the tangent line.

	Point 1		Point 2		
h	x	$f(x)$	$x+h$	$f(x+h)$	m
1	-1		0		
0.5	-1		-0.5		
0.1	-1				
0.01	-1				
\vdots					
-0.01	-1				
-0.1	-1				
-0.5	-1				
-1	-1				

$m t=$
3. Use the definition of derivative $\lim _{h \rightarrow 0} \frac{\mathrm{f}(x+h)-\mathrm{f}(x)}{(x+h)-x}$ to approximate the numerical derivative of $f(x)=\frac{x+1}{x-1}$ at $x=-1$. Sketch the function and the secant lines. Determine the slope of the tangent line.

	Point 1		Point 2		
h	x	$f(x)$	$x+h$	$f(x+h)$	m
1	-1		0		
0.5	-1		-0.5		
0.1	-1				
0.01	-1				
\vdots					
-0.01	-1				
-0.1	-1				
-0.5	-1				
-1	-1				

$m t=$ \qquad
4. Use the definition of derivative $\lim _{h \rightarrow 0} \frac{\mathrm{f}(x+h)-\mathrm{f}(x)}{(x+h)-x}$ to approximate the numerical derivative of $f(x)=\frac{x-2}{x^{2}-4}$ at $x=-1$. Sketch the function and the secant lines. Determine the slope of the tangent line.

	Point 1		Point 2		
h	x	$f(x)$	$x+h$	$f(x+h)$	m
1	-1		0		
0.5	-1		-0.5		
0.1	-1				
0.01	-1				
\vdots					
-0.01	-1				
-0.1	-1				
-0.5	-1				
-1	-1				

$m t=$

