

Features Used
[s], [1, limit(), Σ, [$[=]$, NewProb, DelVar, [window], [GRAPH], [ANS]

Setup
-1
NewFold fourier

Fourier Series This chapter shows how to compute and graph the complex Fourier Series coefficients for a square wave.

Topic 35: Square Wave: Computing the Coefficients

The TI-89 can easily sum the Fourier Series

$$
\mathrm{x}(\mathrm{t})=\sum_{\mathrm{k}=-\infty}^{\infty} \mathrm{c}_{\mathrm{k}} \mathrm{e}^{-\mathrm{j} 2 n \mathrm{kf}} \mathrm{f}_{\mathrm{o}} \mathrm{t}
$$

and evaluate the complex Fourier coefficients defined by the integral

$$
\mathrm{c}_{\mathrm{k}}=\frac{1}{\mathrm{~T}_{0}} \int_{-\frac{\mathrm{T}_{0}}{2}}^{\frac{\mathrm{T}_{0}}{2}} \mathrm{x}(\mathrm{t}) \mathrm{e}^{-\mathrm{j} 2 n \mathrm{kf}_{0} \mathrm{t}} \text { where } \mathrm{f}_{0}=\frac{1}{\mathrm{~T}_{0}}
$$

Suppose $\mathrm{x}(\mathrm{t})$ is a square wave as shown in Figure 1.

Figure 1. Periodic pulse train
For this example, the complex coefficient becomes

$$
\mathrm{c}_{\mathrm{k}}=\frac{1}{\mathrm{~T}_{0}} \int_{-\frac{\mathrm{T}}{2}}^{\frac{\mathrm{T}}{2}} \mathrm{ae}^{-\mathrm{j} 2 n k \mathrm{k}_{0} \mathrm{t}} \mathrm{dt}
$$

1. Clear the TI-89 by pressing [2nd [F6] 2:NewProb ENTER.
2. Three variable substitutions are needed before entering the expression for the complex coefficient. T_{0} is entered as $\mathbf{t 0 0}$ (t 0 is reserved), T is entered as $\mathrm{tt}(\mathrm{t}$ and T are the same on the TI-89), and j is [$[$] which is entered as 2nd [i]. Before entering the equation, any previous values of the variables used must be deleted as shown in screen 1.

$$
\text { CATALOG DelVar too } \square \text { tt } \square
$$

3. Enter the integral (screen 2).
\square
$\mathrm{t} \square$
(-) tt +
(1) 2 STOD mp
4. Next plot the coefficients. To do this, pick values for a, $\mathrm{f0}$ (which sets $\mathbf{t 0 0}$ also), and tt. Try the values shown in screen 3.
5. In this example, a is set to 1 and $\mathbf{f 0}$ to 1000 Hz . With tt set to $00 / 2$, the duty cycle is $1 / 2$ so the square wave will be "on" half the time. Display the value of tmp (top of screen 4).
6. Now save the formula for the coefficient in a function called $\mathbf{c}(\mathbf{k})$ as shown in screen 4.
[2nd [ANS] STOD c \square_{1} k
Using the answer from the integral ensures that the value stored in $\mathbf{c}(\mathbf{k})$ is the result of the integral, not the integral itself. If the integral is saved, it is reevaluated every time a coefficient is computed. With $\mathbf{c}(\mathbf{k})$ stored as a function, the integral is evaluated once and the resulting formula is used each time a coefficient value is needed.

Note: If a Domain Error message appears, try switching to radian angle mode by pressing ${ }^{\text {MODDE }}$ and selecting RADIAN.

7. Check a few data points as shown in screen 5 .
8. All the coefficients look fine except for $\mathbf{k}=0$. The equation for $\mathbf{c}(\mathbf{k})$ shows that for $\mathbf{k}=0$ the result is $0 / 0$. The correct value can be found by using limit() (screen 6).

```
CATALOG limit(c\k k D, k 00
```

The correct value of $\mathbf{c}(\mathbf{k})$ for $\mathbf{k}=0$ is $1 / 2$. This makes sense since the square wave is turned on half the time with an average value of $1 / 2$.
9. Use the when() function to define $\mathbf{c}(\mathbf{k})$ so that the $\mathbf{k}=0$ case is calculated correctly (screen 7).

```
CATALOG when(k■0\square1%2\squarec|k\\STOD cc| k
```

The value of $\mathbf{c}(\mathbf{k})$ valid for all \mathbf{k} is stored in $\mathbf{c c}(\mathbf{k})$. Now the coefficients can be plotted.
10. Set the Graph mode to SEQUENCE (MODE (1) 4:SEQUENCE ENTER), press $\bullet[\gamma=]$, and enter cc(\mathbf{n}) as the sequence to be plotted, as shown in screen 8 . Note that the sequence plot mode uses the variable n.
11. Press \square [WINDOW] to set the plot range as shown in screen 9.
12. Press [GRAPH] to see the results as shown in screen 10 .

The graph also could be done in Function graphing mode. Sequence graphing mode is chosen to emphasize that the coefficients only appear at integer values.

Note: nmin must be greater than or equal to 0 .

Topic 36: Square Wave: Constructing the Wave from the Coefficients

The original signal can be rebuilt from the coefficients by using

$$
x(\mathrm{t})=\sum_{\mathrm{k}=-\infty}^{\infty} \mathrm{c}_{\mathrm{k}} \mathrm{e}^{-\mathrm{j} 2 \pi \mathrm{kf} \mathrm{f}_{0} \mathrm{t}}
$$

1. To do this, return to the Home screen and enter the expression as shown in screen 11.
 $\square \square \mathbf{n} \square(-) \mathbf{3} \square \mathbf{3}$

Notice that the TI-89 applied Euler's Identity to terms of the form $\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}$ to get $2 \cos (\theta)$.

The complete output is

$$
\frac{-2 \cos (6000 \pi \mathrm{t})}{3 \pi}+\frac{2 \cos (2000 \pi \mathrm{t})}{\pi}+1 / 2
$$

2. Save the result as $\mathbf{y} \mathbf{1}(\mathbf{x})$, screen 12 .

2nd [ANS] $\square \mathbf{t} \square \mathrm{xSTO} \mathrm{y}$ ($\square \mathrm{x} \square$
3. Switch the Graph mode to FUNCTION by pressing MODE (1) 1:FUNCTION ENTER. Then press $\rightarrow[\mathrm{Y}=]$ to verify that the equation is entered in the $\mathrm{Y}=$ Editor (screen 13).
4. Press \rightarrow WINDOW] and set the plot range as shown in screen 14.
5. Press \square GRAPH $]$ to see the graph of $\mathbf{x}(\mathbf{t})$ as shown in screen 15.

It's not quite a square wave, but it's not too bad for using only 5 non-zero coefficients. Recall that c(-3), $\mathbf{c}(-1), \mathbf{c}(0), \mathbf{c}(1)$ and $\mathbf{c}(3)$ are non-zero; $\mathbf{c}(-2)=\mathbf{c}(2)=0$.
6. To get a more accurate representation, include more coefficients of the series. On the Home screen, change the summation range to -5 to 5 as shown in screen 16.
CATALOG $\Sigma(\mathbf{c c} \square \mathbf{k} \square[\mathrm{e} x]$ 2nd [i] 2 2nd $[\pi] \mathbf{k} \boldsymbol{x} \boldsymbol{x} \mathbf{t}$ $\square \square \mathbf{k} \square(-) \mathbf{5} \square \square$

The output for the 5 -term series is

$$
\begin{aligned}
& \frac{2 \cos (10000 \pi \mathrm{t})}{5 \pi}-\frac{2 \cos (6000 \pi \mathrm{t})}{3 \pi} \\
& +\frac{2 \cos (2000 \pi \mathrm{t})}{\pi}+1 / 2
\end{aligned}
$$

7. Save the result in $\mathbf{y} \mathbf{2}(\mathbf{x})$ as shown in screen 17.

2nd [ANS] $\mathbf{t}$$x$ STOD y2 $\mathrm{x} \square$
8. Press [GRAPH]. Screen 18 compares the resulting graph of the sum for $\mathbf{k}=-5$ to 5 with the original graph for the sum of $\mathbf{k}=-3$ to 3 . The new result more closely represents a square wave because the sum more closely represents a square wave as the number of terms increases. With an infinite number of terms, the sum exactly represents the square wave.

Tips and Generalizations

The TI-89 can easily find the Fourier Series coefficients in closed form for many periodic signals. In this chapter, $\mathbf{c}(\mathbf{k})$ could be expressed as a simple equation. More complex signals may not have a closed form solution. In these cases, use numeric integration (nInt) to find each of the coefficients.

Chapter 9 adds a new dimension by showing how the TI-89 can manipulate vectors.

