

Fourier Series This chapter shows how to compute and graph the complex Fourier Series coefficients for a square wave.

Topic 35: Square Wave: Computing the Coefficients

The TI-89 can easily sum the Fourier Series

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{-j2nkf_o t}$$

and evaluate the complex Fourier coefficients defined by the integral

$$c_k = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x(t) e^{-j2nkf_0 t}$$
 where $f_0 = \frac{1}{T_0}$

Suppose x(t) is a square wave as shown in Figure 1.

For this example, the complex coefficient becomes

$$c_{k} = \frac{1}{T_{0}} \int_{-\frac{T}{2}}^{\frac{T}{2}} a e^{-j2nkf_{0}t} dt$$

© 1999 TEXAS INSTRUMENTS INCORPORATED

- 78 ELECTRICAL ENGINEERING APPLICATIONS WITH THE TI-89
- 1. Clear the TI-89 by pressing [2nd [F6] 2:NewProb ENTER].
- Three variable substitutions are needed before entering the expression for the complex coefficient. T₀ is entered as t00 (t0 is reserved), T is entered as tt (t and T are the same on the TI-89), and j is [*i*] which is entered as [2nd [*i*]. Before entering the equation, any previous values of the variables used must be deleted as shown in screen 1.

CATALOG DelVar t00 , tt , f0

3. Enter the integral (screen 2).

1 \div too 2nd [\int] a \bullet [e^x] (\bullet) 2nd [ι] 2 2nd [π] k \times fo \times t) , t , (\bullet) tt \div 2 , tt \div 2) STO \bullet tmp

	F1+ F2+ F3+ F4+ F5 F6+ ToolsAl9ebraCalcOtherPr9mIOClean UP		
	■ NeuProh	Done	
	■DelVar t00,tt,f0	Done	
(1)	DelVar tOO,tt,fO FOURIER RADAUTO FUNC	2/30	

Note: If a Domain Error message appears, try switching to radian angle mode by pressing MODE and selecting **RADIAN**.

	F1+ F2+ Tools Algebr	raCalcOtherPi	F5 F 9mi0Clea	10 10 10
	∎1→a			1
	■ 1000 →	f0		1000
	$=\frac{1}{f0}$ → t	00		$\frac{1}{1000}$
	■ <u>t00</u> →	tt		1 2000
(3)	t00/2→t	t. Pen elltri	FUNC	7/20
(-)	ruunien		TUNC	1120
	F1+ F2+ Tools Algebr	raCalcOtherPi	FS F 19miDClea	67 IN UP
	F1+ F2+ ToolsA19eb	ra F3+ F4+ ra Ca1c Other P1	FS F r9ml0(led sin	^{6т} іл ШР (<u>k · π</u>) (· π
	$\frac{\text{F1}}{\text{Too1s} \text{ P1}^{3}\text{ebr}}$ $= \text{tmp}$ $= \frac{\sin\left(\frac{k}{2}\right)}{k \cdot \pi}$	$\frac{\pi}{2} \rightarrow c(k)$	F5 F SmlD(Clea Sin	бтир ∩Шир (<u>k·π</u>) (·π Done
(4)	$\frac{F1}{1001sA19eb}$ $= tmp$ $= \frac{sin\left(\frac{k}{2}\right)}{k \cdot \pi}$ $= ns(1) \rightarrow $	$\frac{\pi}{2} \rightarrow c(k)$	F5 F SmlDClea sin	бт m Ш∌ (<u>k · π</u> (· π Done

- Next plot the coefficients. To do this, pick values for a, f0 (which sets t00 also), and tt. Try the values shown in screen 3.
- 5. In this example, a is set to 1 and f0 to 1000 Hz. With tt set to t00/2, the duty cycle is ½ so the square wave will be "on" half the time. Display the value of tmp (top of screen 4).
- 6. Now save the formula for the coefficient in a function called **c**(**k**) as shown in screen 4.

2nd [ANS] STO► c (k)

Using the answer from the integral ensures that the value stored in $\mathbf{c}(\mathbf{k})$ is the result of the integral, not the integral itself. If the integral is saved, it is reevaluated every time a coefficient is computed. With $\mathbf{c}(\mathbf{k})$ stored as a function, the integral is evaluated once and the resulting formula is used each time a coefficient value is needed.

- 7. Check a few data points as shown in screen 5.
- 8. All the coefficients look fine except for k=0. The equation for c(k) shows that for k=0 the result is 0/0. The correct value can be found by using limit() (screen 6).

 $\begin{array}{c} \hline \textbf{CATALOG} \text{ limit(} \textbf{c} (k) , k , 0) \end{array}$

The correct value of c(k) for k=0 is $\frac{1}{2}$. This makes sense since the square wave is turned on half the time with an average value of $\frac{1}{2}$.

9. Use the **when()** function to define **c**(**k**) so that the **k**=0 case is calculated correctly (screen 7).

CATALOG when ($k \equiv 0$, 1 \div 2 , c (k)) STOP cc (k)

The value of c(k) valid for all k is stored in cc(k). Now the coefficients can be plotted.

- 10. Set the Graph mode to SEQUENCE (MODE) 4:SEQUENCE (ENTER), press [Y=], and enter cc(n) as the sequence to be plotted, as shown in screen 8. Note that the sequence plot mode uses the variable n.
- **11.** Press [WINDOW] to set the plot range as shown in screen 9.

12. Press • [GRAPH] to see the results as shown in screen 10.

The graph also could be done in **Function** graphing mode. **Sequence** graphing mode is chosen to emphasize that the coefficients only appear at integer values.

	F1+ F2- ToolsA19et	+ F3+ F4+ praCalcOtherP	F5 F r9mi0C1ec	67 JN UP
	■ c(1)			$\frac{1}{\pi}$
	■ c(2)			0
	■ c(3)			-1
	■ c(0)			ા undef
(5)		RAD AUTO	FUNC	13/30
· /	1 00111211	nne na ra	1 8145	20100
	(F1-) F2	- YE2-YE4-Y	FFYF	
	F1+ F2- ToolsAl9et	+ F3+ F4+ praCalcOtherP	F5 F r9ml0C1ec	67 10 UP
	F1+ F2- ToolsA19et C(2)	• F3• F4• praCa1cOtherP	F5 F r9miD(Clea	бт In Up 0 1
	(F1, F2 ToolsA19et ■ c(2) ■ c(3)	r F3+ F4+ praCalcOtherP	FS F r9ml0Cleo	6* 10 UP 0 -1 -1 -1 -1
	<pre>F1; F2; Tools Alget ■ c(2) ■ c(3) ■ c(0) ■ lim c</pre>	• F3• F4• oraCalcOtherP	F5 F r9mi0Cleo	6 1 0 -1 3·π undef 1/2
	(F1, F2, Tools(#19et C(2) C(3) C(0) C(0) I im c k+0	racaicotherp	F5 F r9mi0Cleo	1/2 1/2 1/2

	F1- F2 T001sA19e	;+ F3+ F4 braCa1c0the	r F5 r Pr9mi0	F6∓ Clean Up
	-0(0)			З∙л
	■ c(0)			undef
	lim c	:(k)		1/2
	k→O			
		.k=0 ,else→0	56(k)	Done
7 \	when(k	=0,1/2,0	:(k))→	cc(k)
"	FOURIER	RAD AUTO	FUN	IC 15/30
	F1- F2-	Edit All	F6+ F7 StyleAxe	s]

ľ

	Tools Zoom	Edit 🗸 ATT Sta	Te Axes	
	+PLOTS			
	⊻ u1= <u>co</u>	:(n)		
	ui1=			
	u2=			
	ui2=			
	u3=			
	ui3=			
	u4=			
(Q)	<u>u1(n)=</u>	56(n)		
(0)	FOURIER	RAD AUTO	SEO	

Note: nmin must be greater than or equal to 0.

Topic 36: Square Wave: Constructing the Wave from the Coefficients

The original signal can be rebuilt from the coefficients by using

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{-j2\pi k f_0 t}$$

1. To do this, return to the Home screen and enter the expression as shown in screen 11.

CATALOG Σ (cc (k) • [e^x] 2nd [i] 2 2nd [π] k × f0 × t), k, (\ominus 3, 3)

Notice that the TI-89 applied Euler's Identity to terms of the form $e^{i\theta} + e^{-i\theta}$ to get $2\cos(\theta)$.

The complete output is

$$\frac{-2\cos(6000\pi t)}{3\pi} + \frac{2\cos(2000\pi t)}{\pi} + 1/2$$

2. Save the result as y1(x), screen 12.

2nd [ANS] [] t = x STO y1 (x)

- 3. Switch the Graph mode to FUNCTION by pressing MODE
 () 1:FUNCTION ENTER. Then press [Y=] to verify that the equation is entered in the Y= Editor (screen 13).
- **4.** Press [WINDOW] and set the plot range as shown in screen 14.
- 5. Press [GRAPH] to see the graph of **x**(**t**) as shown in screen 15.

It's not quite a square wave, but it's not too bad for using only 5 non-zero coefficients. Recall that c(-3), c(-1), c(0), c(1) and c(3) are non-zero; c(-2)=c(2)=0.

6. To get a more accurate representation, include more coefficients of the series. On the Home screen, change the summation range to -5 to 5 as shown in screen 16.

CATALOG Σ (cc (k) \bullet [e^x] 2nd [ι] 2 2nd [π] k× f0 × t), k, (\bullet 5, 5)

© 1999 TEXAS INSTRUMENTS INCORPORATED

The output for the 5-term series is

$$\frac{2\cos(10000\pi t)}{5\pi} - \frac{2\cos(6000\pi t)}{3\pi} + \frac{2\cos(2000\pi t)}{\pi} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac$$

7. Save the result in y2(x) as shown in screen 17.

2nd [ANS] \mathbf{I} t = x STO $\mathbf{y2}$ (x)

8. Press ● [GRAPH]. Screen 18 compares the resulting graph of the sum for k=-5 to 5 with the original graph for the sum of k=-3 to 3. The new result more closely represents a square wave because the sum more closely represents a square wave as the number of terms increases. With an infinite number of terms, the sum exactly represents the square wave.

Tips and Generalizations

The TI-89 can easily find the Fourier Series coefficients in closed form for many periodic signals. In this chapter, $\mathbf{c}(\mathbf{k})$ could be expressed as a simple equation. More complex signals may not have a closed form solution. In these cases, use numeric integration (**nInt**) to find each of the coefficients.

Chapter 9 adds a new dimension by showing how the TI-89 can manipulate vectors.