Problem 1 - Concentric Circles

1. Complete the following table at four different values of θ on page 1.2. (Move point P to change the value of θ .)

Position	θ	Arc Length 1	Arc Length 1 Radius 1	Arc Length 2	Arc Length 2 Radius 2
1					
2					
3					
4					

- 2. What patterns do you notice from the table above?
- 3. Does a central angle exist where arc length 1 = arc length 2?
- 4. For what central angle is $\frac{\text{arc length 1}}{\text{radius 1}} = \frac{\text{arc length 2}}{\text{radius 2}}$?

Problem 2 - Random Circles

5. Complete the following table for four different values of θ and four random circles on page 2.2. (Move point P to change the value of θ . Click the slider for Random for a new Radius.)

Position	θ	Radius 1	Arc Length 1	Arc Length 1 Radius 1	Arc Length 2	Arc Length 2 Radius 2
1						
2						
3						
4						

- 6. What patterns do you notice from the table above?
- 7. When radius $1 \neq \text{radius } 2$, does a central angle exist where arc length 1 = arc length 2?
- 8. For what central angle is $\frac{\text{arc length 1}}{\text{radius 1}} = \frac{\text{arc length 2}}{\text{radius 2}}$?

lame	 		
Class	 		

9. Convert the four values of your central angle from the table in Question 5 into radians rounded to two decimal places. (i.e., $35^{\circ} = 35^{\circ}(\pi/180^{\circ}) \approx 0.61$)

10. The values of $\frac{\text{arc length 1}}{\text{radius 1}}$ and $\frac{\text{arc length 2}}{\text{radius 2}}$ are equal for all central angles and all radii.

These two values are therefore proportional. What is the approximate constant of proportionality?

Problem 3 - Arc Length

- 11. What is the formula for the circumference of a circle?
- 12. What is the circumference of the circle on page 3.2?
- 13. What percentage of the circumference is the arc length for a central angle of 90°?
- 14. Explain how to find what percentage of the circumference is an arc length when given the central angle.
- 15. What is the formula for the arc length of a sector with central angle θ (in degrees) and radius r?

Problem 4 - Sector Area

16. What is the formula for the Sector Area with central angle θ (in degrees) and radius r?