\qquad
\qquad

Problem 1 - Concentric Circles

1. Complete the following table at four different values of θ on page 1.2. (Move point P to change the value of θ.)

Position	θ	Arc Length 1	$\frac{\text { Arc Length 1 }}{\text { Radius 1 }}$	Arc Length 2	$\frac{\text { Arc Length 2 }}{\text { Radius 2 }}$
1					
2					
3					
4					

2. What patterns do you notice from the table above?
3. Does a central angle exist where arc length $1=\operatorname{arc}$ length 2 ?
4. For what central angle is $\frac{\text { arc length } 1}{\text { radius } 1}=\frac{\text { arc length } 2}{\text { radius } 2}$?

Problem 2 - Random Circles

5. Complete the following table for four different values of θ and four random circles on page 2.2. (Move point P to change the value of θ. Click the slider for Random for a new Radius.)

Position	θ	Radius 1	Arc Length 1	$\frac{\text { Arc Length 1 }}{\text { Radius 1 }}$	Arc Length 2	$\frac{\text { Arc Length 2 }}{\text { Radius 2 }}$
1						
2						
3						
4						

6. What patterns do you notice from the table above?
7. When radius $1 \neq$ radius 2 , does a central angle exist where arc length $1=\operatorname{arc}$ length 2 ?
8. For what central angle is $\frac{\text { arc length } 1}{\text { radius } 1}=\frac{\text { arc length } 2}{\text { radius } 2}$?
\qquad
\qquad
9. Convert the four values of your central angle from the table in Question 5 into radians rounded to two decimal places. (i.e., $35^{\circ}=35^{\circ}\left(\pi / 180^{\circ}\right) \approx 0.61$)
10. The values of $\frac{\text { arc length } 1}{\text { radius } 1}$ and $\frac{\text { arc length } 2}{\text { radius } 2}$ are equal for all central angles and all radii. These two values are therefore proportional. What is the approximate constant of proportionality?

Problem 3 - Arc Length

11. What is the formula for the circumference of a circle?
12. What is the circumference of the circle on page 3.2 ?
13. What percentage of the circumference is the arc length for a central angle of 90° ?
14. Explain how to find what percentage of the circumference is an arc length when given the central angle.
15. What is the formula for the arc length of a sector with central angle θ (in degrees) and radius r ?

Problem 4 - Sector Area

16. What is the formula for the Sector Area with central angle θ (in degrees) and radius r ?
