In this activity, you will write linear equations with restricted domains to model fencing around a herd of sheep, then map out the fencing using the TI-Innovator Rover.

Note the location of your sheep on the coordinate grid shown at right.

1. Sketch a fence around your sheep that meets the following conditions:

- The fencing begins at $(0,0)$.
- The fencing is made of four linear functions with restricted domains.
- The four pieces of fencing are connected to form a polygon.
- The fencing ends at $(0,0)$.

2. Write linear functions in the form $y=m x+b$ for each of the four sections of fencing. Note the restricted domain for each function, as well.

Fence Section	Linear Function in the Form $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{b}$	Restricted Domain
1		$\leq x \leq$
2		$\leq x \leq$
3		$\leq x \leq$
4		\leq

3. Position the Rover at the origin of the coordinate plane facing toward the positive x-axis. Run the Corralling the Sheep program on your calculator connected to the TI-Innovator Rover. When prompted, enter your four linear equations and domain restrictions into the Rover. Record your observations below.

Extension: Fence in the sheep using the least amount of fencing. Your fence still needs to meet the criteria outlined in problem 1 above. How do you know you've used the least amount of fencing? How much fencing is needed?

