Mystery Quadrilateral!

by - Steve Phelps

Activity overview

This activity could be used as an assessment after a unit on special quadrilateral. Students are given an unknown mystery quadrilateral that looks like a square. By dragging the vertices of the mystery quadrilateral, students conjecture the true name of the quadrilateral. Students support their conjecture by taking appropriate measurements to support their conjectures.

Concepts

Special Quadrilaterals (Parallelograms, Rectangles, Rhombi, Squares, Kites, Trapezoids, Isosceles Trapezoids) and their properties.

Teacher preparation

The associated .tns file should be downloaded onto the student handhelds. If you choose to have students to type their conjectures into the document, you should be prepared to have students download their completed documents to your computer. You may also choose to have your students write their conjectures and support on paper; you should still check their documents for their support.

Classroom management tips

Roam about the room. Some students will need help with measuring angles and sides. Other students may need help "uncluttering" their screens.

TI-Nspire Applications

Graphs and Geometry.

Step-by-step directions

Students should work through the pages.

Assessment and evaluation

- You must check the student's documents on their handhelds. If you are not downloading their work onto your computer and having students write their conjectures and support on paper, some students may not make any measurements or any drag tests.
- For some students at earlier Van Hiele levels with respect to quadrilaterals, it may be appropriate for them to base their support for their conjecture on how the quadrilateral looks.
- Many of the shapes can be dragged into different shapes. THIS IS THE IDEA BEHIND MYSTERY QUADRILATERALS! The students should choose the most general shape name for each one!
- The most difficult shape to identify is the cyclic quadrilateral on page 8. I use this shape to include something that the students have not seen. The cyclic quadrilateral can be dragged into a kite, a rectangle, a square, or an isosceles trapezoid.
- There is an associated ths file with solutions.

Activity extensions

- This could be completed as a whole class activity. You could have your students work through each one, and then have some students present their "proofs" to the class.
- Students could list all the possible shapes for each mystery quadrilateral.
- Students could "group" the pages of the documents according the shapes that can be made (Which pages have a quadrilateral that can be dragged into a trapezoid?)

Student TI-Nspire Document

Mystery Quadrilateral.tns.
SOLUTIONSMystery Quadrilateral.tns

Mystery Quadrilaterl Screenshots	Solutions Screenshots with Correct Answer	Comments and Other Possible Shapes
1.1 1.2 1.3 1.4 PAD AUTO REAL Mystery Quadrilaterals! On the following 8 pages, you will find quadrilateral $A B C D$ that looks like a square. You should drag the vertices of $A B C D$ and make a conjecture as to what kind of shape $A B C D$ really is! You should make the appropriat measurements to support your conjecture!	1.1 1.2 1.3 1.4 RAD AUTO REAL Mystery Quadrilaterals! On the following 8 pages, you will find the solutions to Mystery Quadrilateral! There are no measurement. You should "un-hide" everything to see how the shapes are constructed.	
		Square Rhombus Dart
		Square

Materials: nSpire

1.3 1.4 1.5 1.6 RAD AUTO REAL 1.4		
	(using the rectangle tool)	Square
	Using the regular polygon tool	
1.3 1.3 1.4 1.5 1.6 RAD AUTO REAL	1.6 1 1.3 1.4 1.5 1.6 RAD AUTO REAL	
		Rectangle Rhombus Square
	Trapezoid	Isosceles Trapezoid Square Rectangle

1.5 1.6 1.7 1.8 RAD AUTO REAL 1.5 1.0	1.5 1.6 1.7 1.8 PRAD AUTO REAL an 1.5	
	Ordinary Quadrilateral	Any of the quadrilaterals
$1.6 \mid$ 1.7 1.8 1.9 RAD AUTO REAL 1.6	1.6 1.7 1.8 1.9 RAD AUTO REAL 1.6 cm	
		This is the most difficult on the student's first encounter. Isosceles Trapezoid Kite Rectangle Square
	1.7 1.8 1.9 1.10 RAD AUTO REAL 1.7 atm	
	Isosceles Trapezoid	Rectangle Square

