Name \qquad
\qquad

Problem 1 - An isosceles triangle

Triangle $A B C$ is shown on page 1.3.

- Make a conjecture about the angle measures and the lengths of the opposite sides of an isosceles triangle.
- In an isosceles triangle, when is the measure of the vertex angle greater than the measure of either base angle? When is it less than the measure of either base angle?

Problem 2 - Exterior and remote interior angles

Triangle $D E F$ is shown on page 2.2.

- How are the largest angle and longest side related?
- How are the smallest angle and smallest side related?

Complete each statement.

- In a triangle, the measure of an exterior angle is equal to \qquad .
- $m \angle G E F>$ \qquad
- $m \angle G E F>$ \qquad
- In a triangle, the measure of an exterior angle is greater than \qquad .

Problem 3 - The perpendicular distance

On page 3.2, $\overline{P M} \perp \overline{X Y}$.

- Make a conjecture about the lengths of $\overline{P M}$ and $\overline{P Q}$.

地
 Triangle Inequalities

Prove the following statement:
The perpendicular segment from a point to a line is the shortest segment from the point to the line.

Given: $\overline{P M} \perp \overline{X Y}$
Prove: $\overline{P Q}>\overline{P M}$

Statements	Reasons

Challenge: Prove the same statement using a different approach.
Given: $\overline{P M} \perp \overline{X Y}$
Prove: $\overline{P Q}>\overline{P M}$

Statements	Reasons

