The Biggest Box Activity
 Modeling Non-Line ar Data

\mathcal{A} classic problem looking at maximizing volume by varying the height of a box. Wises grapfing calculators to analyze data collected and to model a cubic equation. Lookfor points that maximize volume while developing a preliminary notion of families of cubics.

Mathematical Concepts

Explored

- Explore non-linear relationsfips
- Problem solving using physical models
- Work with volume formulas and develop an understanding of how changes in dimension affect votume
- Grapf a cubic equation
- Practice setting up a
fist to build a
mathematical model of a problem

Tecfinology Ulsed/Materials
Needed

- Student Worksheet
- 2 pieces of 8.5×11 paper and 1 inde x card $(3 \times 5$ or 5×7) for each group
- Scissors, tape, rulers, centimeter or inch cubes or cereal to measure volume.
- TIS3+

Commands/Functions Ulilize d

- $y=$
- grapf/table
- trace
- formula

California Mathematics Content Standards Addressed by this Activity
$5^{t h}$ grade

- Alge bra and Functions 1.4-Identify and graph ordered pairs
- Algebra and Functions 1.5-Solve problems involving line ar functions with integer values; write the equation and graph resulting ordered pairs
- Measurement and Geometry 1.2-Construct a cube and rectangular box from twodimensional patterns; compute the surface area
- Measurement and Geometry 1.3- Understand volume and use the appropriate units to compute the volume of rectangular solids
$6^{\text {th }}$ grade
- Alge bra and Functions 3.1- Ulse variables in expressions describing geometric quantities
- Algebra and Functions 3.2-Express in symbolic form simple relationsfips arising from geometry
- Alge bra and $\mathcal{F u n c t i o n s ~ 1 . 5 - R e p r e s e n t ~ q u a n t i t a t i v e ~ r e l a t i o n s h i p s ~ g r a p h i c ~ a l l y ; ~}$ interpret meaning of graphs or parts of graphs
- $\mathcal{A l g e}$ bra and $\mathcal{F} u n c t i o n s$ 3.2-Plot the values from the volumes of three-dimensional shapes for various values of the edge lengths
- Measurement and Geometry 2.1-Use perimeter, area (2-dimensional), surface area (3-dimensional) and volume formulas routine ly

Prior Knowle dge

Students should be familiar writing variable expressions. They should also have some experience with the formula for finding volume. S tudents should also be familiar with using a grapfing calculator in problem solving situations and making scatter plots using plot function.

Activity Agenda, Teacher \mathcal{N} otes and Points for Discussion

Teacker will...
Student will...

1. Give students (in pairs) 1 piece of paper 8.5×11, scissors and tape. 2. Tell students they have to cut out 4 squares exactly the same size from each corner and fold the remaining paper into an open box. Tell students to use easily measurable increments (1/4 inch or $1 / 2$ inch if using standard measure or 5 mm if using metric measures). Demonstrate an example if students need to see one. Give students about 10 minutes to complete the task.	Student construct open box in pairs.
3. Ask the question "Who has the biggest box?" Clarify as a class that for this activity biggest means greatest volume.	Participate in class discussion clarifying Giggest for this activity
4. Demonstrate fow to calculate the volume of the box used for the demo. After calculating volume verify the reasonable ness of calculations by filling open box with centimeter, inch cubes or cereal and a graduated cylinder. Have students calculate the volume of their open boxusing a calculator.	Calculate volume of open box. Visually compare models with another pair of students. If available, use cubes or cereal to verify volume.

Page 2
Biggest Box
Developed by Gail Standiford for CMETS

5. Distribute student worksheet. Have students collect data for various size cut out and their corresponding volumes.	Students collect data for various size cut out and their corresponding volumes. Students plot their data into the graphing calculator. Ulse Zoom 9:Zoomstat for graph wind ow.
6. Have students use the ir grapłing calculator to estimate the size of the greatest volume for the 8.5×11 sheet of paper.	Using the model and data, students determine an equation for calculating volume Gased on a cut out of x. Students enter the ir equation using the $y=k e y$ to model problem. Ulse the trace key to find the box with the greatest volume. Students build biggest box based on the ir findings.
7. Discuss restrictions on the cutout value of x.	Participate in whole class discussion.
8. Have students extend the graph by lifting the restrictions on χ. Have students adjust the window on the ir grapfing calculator to see the entire function (use xmin=-10, xmax $=10$, $x \operatorname{sc} 1=1, y \min =-100, y \max =75)$. Many students familiar with parabolas assume this portion of the graph is a parabola. By extending the graph the nature of the cubic function is more apparent.	$\mathcal{A n s w e r ~ q u e s t i o n s ~ o n ~ w o r k s k e e t . ~}$
9. Discuss any patterns the students see.	Participate in whole class discussion.
10. Extension: Repeat the same process as above for an index card.	Students repeat process for finding biggest box for an index card.

Extensions

Ulse the \mathcal{T} I Navigator system to have students send cut out and volume data points to the class in activity center. Discuss as a class the shape of the graph and develop the equation. Assign groups different size sheets of paper. Have the groups develop the ir volume equations and send them to the class in activity center. Discuss the patterns noticed in the different volume equations. Finish the activity by sending students alearning check document.

