String Graphs - Part $1+2$

Student Activity
$\begin{array}{llllll}7 & 8 & 9 & 10 & 11 & 12\end{array}$

Aim

- Connect the outcomes of Advanced Strings Graphs Part 1 and Advanced Strings Part 2 using transformation matrices

Visualising the Connection

Open the TI-Nspire file String Graphs 3.
Page 1.2 contains a visual of the String Graphs produced in Activity 2. Two matrices control the location of these string patterns:

- Rotation matrix
- Dilation matrix

The angle θ (theta) is associated with the rotational matrix and
 can be changed using the slider. The dilation matrix dilates in both the x and y direction and can be adjusted using the k slider.

Adjust the sliders to map the lines and points from activity 2 to the lines and points from activity 1.

Question: 1.

What is the angle (measured in degrees) required to orient the points and lines from activity 2 back to those from activity 1? Justify your answer.

Question: 2

What is the dilation factor required to map the points and lines from activity 2 back to those from activity 1 ? Justify your answer.

Question: 3.

Explain how the rotation and dilation connect the String Graphs activities 1 and 2.

- The dilation matrix $\left[\begin{array}{ll}k & 0 \\ 0 & 1\end{array}\right]$ represents a dilation factor k from the y axis.
- The dilation matrix $\left[\begin{array}{ll}1 & 0 \\ 0 & k\end{array}\right]$ represents a dilation factor k from the x axis.
- The rotational matrix $\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$ produces a rotation of θ in a counter-clockwise direction about the origin.

Navigate to problem 2, page 1.

In this Notes application the angle, dilation and coordinates can be edited (press Enter after each edit). The corresponding matrix entries will automatically update.

The image opposite shows one of the original points in Activity 2 $(-10,10)$ transformed via a rotation in a clockwise direction $\left(-45^{\circ}\right)$ and dilated by a factor of $\frac{1}{\sqrt{2}}$ from both the y and x axis.
Tranforming Points
Change the angle, dilation and coordinate pair to
see the transformation.
Press enter after each entry.
$\mathbf{x p : = - 1 0 , - 1 0 \quad y \mathbf { p } : = 1 0 , 1 0}$
Angle: $\boldsymbol{\theta}:=-45^{\circ},-45$ Dilation: $\mathbf{k}:=\frac{1}{\sqrt{2}}$
$\left[\begin{array}{ll}\mathbf{k} & 0 \\ 0 & \mathbf{k}\end{array}\right] \cdot\left[\begin{array}{cc}\cos (\boldsymbol{\theta}) & -\sin (\boldsymbol{\theta}) \\ \sin (\boldsymbol{\theta}) & \cos (\boldsymbol{\theta})\end{array}\right] \cdot\left[\begin{array}{c}\mathbf{x p} \\ \mathbf{y p}\end{array}\right],\left[\begin{array}{c}0 \\ 10\end{array}\right]$

The resulting coordinate $(0,10)$ corresponds to the first point in Activity 1.
In Activity 1 points on the y axis $(0,10),(0,9) \ldots$ were connected to points along the x axis $(1,0),(2,0) \ldots$. In Activity 2 points along the line $y=-x,(-10,10),(-9,9) \ldots$ were connected to points along the line $y=x$ $(1,1),(2,2) \ldots$

Question: 4.
Use the matrix transformations on Page 2.1 to show that the points in Activity 2 can be transformed to the original points in Activity 1.

Question: 5.

The same matrix transformations on Page 2.1 can be applied to the points of intersection between consecutive lines. The first four points of intersection in Activity 2 are shown below. Determine their corresponding points in Activity 1 using the matrix transformations.

$$
\begin{array}{ll}
\text { Point 1: }\left(-8, \frac{92}{11}\right) & \text { Point 2: }\left(-6, \frac{78}{11}\right) \\
\text { Point 3: }\left(-4, \frac{68}{11}\right) & \text { Point 4: }\left(-2, \frac{62}{11}\right)
\end{array}
$$

Equations

The same transformations applied to the points from Activity 1 and 2 can be applied to the lines.

$$
\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{ll}
k & 0 \\
0 & k
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]
$$

Expressions for x and y can be determined on the calculator using inverse matrix operations:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
k & 0 \\
0 & k
\end{array}\right]^{-1}\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]^{-1}\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]
$$

Texas Instruments 2017. You may copy, communicate and modify this material for non-commercial educational purposes provided all

Navigate to page 3.1. The rotation and dilation matrices have already been entered so they can be copied and pasted as required.

Store -45° in angle θ

$$
\theta:=-45^{\circ}
$$

Store $\frac{1}{\sqrt{2}}$ in the value for k.

The matrix transformations can be entered naturally as they are expressed above.

$$
\begin{aligned}
& \text { Ctrl }+\mathrm{C}=\text { Copy } \\
& \text { Ctrl }+\mathrm{V}=\text { Paste }
\end{aligned}
$$

An alternative method is to highlight the required expression and press [Enter] and the expression will be pasted into the active cursor position.

Question: 6.

Write expressions for x and y in terms of x^{\prime} and y^{\prime}.

Question: 7.

The linear equation determined in Advanced String Graphs Part 2, passing through (-10, 10) and $(1,1)$ is given by: $y=-\frac{9}{11} x+\frac{20}{11}$. Use your result from Question 6 to determine the linear equation passing through the points $(0,10)$ and $(1,0)$ corresponding to the first equation in Advanced String Graphs Part 1.

Question: 8.

The linear equation determined in Advanced String Graphs Part 2, passing through (-9,9) and $(2,2)$ is given by: $y=-\frac{7}{11} x+\frac{36}{11}$. Use your result from Question 6 to determine the linear equation passing through the points $(0,9)$ and $(2,0)$ corresponding to the first equation in Advanced String Graphs Part 1.

Question: 9.

Navigate to page 4.1 and enter the appropriate transformations and equation, using the function notation provided: $f(x)$.
a) Check your answers to Questions 7 and 8 .
b) Check the following two equations from Part 2.

Question: 10.

The parabola passing through the points of intersection in Activity 2 was: $y=\frac{x^{2}}{22}+\frac{60}{11}$. Use an appropriate matrix transformation to write an equation for the equation to the curve from Activity 1.

Do not attempt to express the equation in the form $\mathbf{y}=$. The equation can however be copied and pasted into the graph application on page 1.2 (Relation 1) to confirm it is correct.

Extension - Conic Sections

A parabola is defined as a set of points equidistant from a single point (focus) and a line (directrix), that is: $d_{1}=d_{2}$ in the diagram opposite.

Question: 11.
Use the equation from Activity 2: $y=\frac{x^{2}}{22}+\frac{60}{11}$ to determine the location of the focus and directrix.

Question: 12.
Check your answer to the previous question using a selection of points on the curve.

Question: 13.

Use transformation matrices to determine the coordinates of the focal point and equation to the directrix for the curve from Activity 1. Use a selection of points to show that your answer is correct.

