

Student Activity

Open the TI-Nspire document *Exponential_Functions.tns.*

What is true of the function values $f(x) = ab^x$ when a > 0? Or when a < 0? What is true about the graph of $f(x) = ab^x$ when b > 1? Or when 0 < b < 1? In this activity, you will explore these topics as you investigate the effects of *a* and *b* on the graphs of functions of the form $f(x) = ab^x$.

Move to page 1.2.

- 1. On page 1.2, you will see a graph of the function $f(x) = ab^x$, where a = 1 and b = 2. Click on the Δ symbol to increase the value of a.
 - a. What happens to the graph of $f(x) = ab^x$ as you increase the value of a?
 - b. Does the domain change?
 - c. Does the range change?
- 2. Click on the ∇ symbol to change the value of *a* to a negative number.
 - a. What happens to the graph of $f(x) = ab^{x}$?
 - b. Does the domain change?
 - c. Does the range change?
- 3. For the function $f(x) = ab^x$, find the following values.
 - a. f(0)
 - b. y-intercept of the graph
- 4. Describe the graph of $f(x) = ab^x$ when a = 0. Why does this happen?
- 5. A function is called *exponential* if it is of the form $f(x) = ab^x$, provided $a \neq 0$, b > 0, and $b \neq 1$.
 - a. Why do you think that a = 0 is not included?
 - b. Why is the base b = 1 not included?

Expo	nentia	al Fun	ctio	ns					
f(x)=a	bx								
Click	on the	e∆ syr	nbo	l to ii	ncre	ase	the	valu	le
Click of a a	on the nd foll	e∆syr ow the	nbo e dir	l to ii ectio	ncre ns o	ase n th	the e sti	valu uder	ie ht

Name

Class

Name _	
Class _	

Move to page 2.1.

- 6. On page 2.1, you see a graph of the function $f(x) = ab^x$, where a = 1 and b = 1/2. Click on the Δ symbol to increase the value of a.
 - a. What happens to the graph of $f(x) = ab^x$ as you increase the value of a?
 - b. Do the domain and range change? Explain.
- 7. Click on the ∇ symbol to change the value of *a* to a negative number.
 - a. What happens to the graph of $f(x) = ab^{x}$?
 - b. Does the domain change?
 - c. Does the range change?
- Look at the graph at the right of f(x) = ab^x. Margaret says that a < 0 and b > 1. Is she correct? Justify your response mathematically.

Name	
Class _	

Move to page 3.1.

9. Sketch the graph of each of the following.

Graph: $f(x) = ab^x$	<i>a</i> > 0	<i>a</i> < 0
When <i>b</i> > 1		
When <i>b</i> = 1		
When 0 < <i>b</i> < 1		