## Eye Spy

## Student Activity

$\begin{array}{llllll}7 & 8 & 9 & 10 & 11 & 12\end{array}$


Investigation

## Problem to Solve

This problem is called "Eye Spy" because the combination of graphs looks a little bit like an eye. The top outline of the eye is defined by the function:

$$
f(x)=e^{-x^{2}}
$$

The iris of the eye is defined by the relation:

$$
x^{2}+y^{2}=r^{2} \text { where } r \text { is the radius of the iris. }
$$



The aim of this investigation is to determine the maximum area of the iris where it is contained within the outline of the eye.

## Question: 1.

Determine a function for the lower outline of the eye.

## Question: 2.

Let P represent the point where the outer edge of the iris connects with the outline of the eye.
a) Write an equation relating $f(x)$ and the equation to the iris at point P .
b) Write an equation for the area of the iris in terms of $x$.
c) Use calculus to determine the value of $x$ for which the area of the iris is a maximum given the iris fits completely inside the outline of the eye.

## Question: 3.

a) Write an equation relating $f^{\prime}(x)$ and the gradient of the iris at point P .
b) Determine the value of $x$ and corresponding maximum area of the iris.

## Extension

Apply appropriate transformations to the original eye shape such that the maximum iris area occurs at the point of inflection on the graph.

