First Order Linear Differential Equations

Donald Worcester
Winter Park High School
donald.worcester@ocps.net

Materials Needed: TI-Nspire CAS unit
TI-Nspire Navigator
FirstOrderLinearDE.tns file
IntegratingFactorDerivation.tns file
GeneralSolutionofFirstOrderLinearDE.tns file

Courses: AP Calculus BC

Differential Equations

Objective: This activity will introduce students to first order linear differential equations.
Procedures: \quad Send the FirstOrderLinear DE.tns file to the students.

The students should review pages $1.1-1.6$ on their own. You should give students a few minutes to read these pages, and then discuss the information with them.

1.1	1.2	1.3
Now it is time, to derive the general solution		
to a first order linear differential equation.		
To solve a first order linear differential		
equation, we first need an integrating factor,		
which we will define as $u(x)$.		
Went		

\section*{| 1.2 | 1.3 | 1.4 | 1.5 |
| :--- | :--- | :--- | :--- |
| RAD AUTO REAL | | | |}

We will use our integrating factor to rewrite the left hand side of our first order differential equation into the derivative of the product of $u(x) \cdot y$.

At this time, derive the integrating factor $u(x)$, using the hint on the following page.
x

The first order linear differential equation of the form $\frac{d y}{d x}+P(x) \cdot y=Q(x)$ is said to be in standard form.

\section*{| 1.3 | 1.4 | 1.5 | 1.6 | RAD AUTO REAL |
| :--- | :--- | :--- | :--- | :--- |}

Given, the first order linear differential equation, $\frac{d y}{d x}+P(x) \cdot y=Q(x)$.

Step one, rewrite the left hand side as
$u(x) \cdot \frac{d y}{d x}+u(x) \cdot P(x) \cdot y$ and set this equal to
$\frac{d}{d x}(u(x) \cdot y)$.

Students should enter their solution for $u(x)$ on page 1.7.

1.7	1.8	1.9	1.10	RAD AUTO REAL
After deriving the integrating factor, type your				
solution for $u(x)$ below.				

Once all of the students have derived (or attempted to derive) a value of $u(x)$, you should send all students the IntegratingFactorDerviation.tns file and review the derivation with them.

Students will now find a general solution to a first order linear differential equation. Students should review pages 1.9-1.10, and then enter their general solution on page 1.11.

Once all of the students have derived (or attempted to derive) a general solution to the first order linear differential equation, you should send all students the GeneralSolutionofFirstOrderLinearDE.tns file and review the derivation with them.

To get the results in the second line above, we needed to notice the important use of the product rule.

x

Students should now be able to solve a first order linear differential equation. You will probably want to complete this example as a class to be sure that all students understand the process.

1.9	1.10	1.11
	1.12	
Now it is our turn to try to solve a first order differential equation.		
Let's work this problem together.		
Solve: $x y^{\prime}+3 y=x^{3}$		

To solve this differential equation, you will first need to rewrite it into the standard form.

$$
\begin{aligned}
& x y^{\prime}+3 y=x^{3} \\
& \Rightarrow y^{\prime}+\frac{3}{x} y=x^{2}
\end{aligned}
$$

Students should now identify $P(x)=\frac{3}{x}$ and $Q(x)=x^{2}$.
Calculating the value of the integrating factor,

$$
\begin{aligned}
& u(x)=e^{\int P(x) d x} \\
& u(x)=e^{\int \frac{3}{x} d x} \\
& u(x)=e^{3 \ln x} \\
& u(x)=x^{3}
\end{aligned}
$$

Therefore the general solution to the differential equation is
$y=\frac{1}{u(x)}\left(\int Q(x) u(x) d x+C\right)$
$y=\frac{1}{x^{3}}\left(\int\left(x^{2} \cdot x^{3}\right) d x+C\right)$
$y=\frac{1}{x^{3}}\left(\int\left(x^{5}\right) d x+C\right)$
$y=\frac{1}{x^{3}} \cdot \frac{x^{6}}{6}+\frac{C}{x^{3}}$
$y=\frac{1}{6} x^{3}+\frac{C}{x^{3}}$

At this point, you should show students how to solve a first order linear differential equation with their Nspire-CAS calculators. The procedure can be found on pages 1.13-1.15.

1.10	1.11	1.12	1.13	RAD AUTO REAL
Use your calculator differential equation to solve the first order				

The syntax for your calculator is deSolve $\left(y^{\prime}=f(x, y), x, y\right)$, where x is the independent variable and y is the dependent variable.

At this time, solve the differential equation for y^{\prime} and enter the information into your calculator

| 4 | 1.12 | 1.13 | 1.14 | 1.15 | RAD AUTO REAL |
| :--- | :--- | :--- | :--- | :--- | :--- | deSolve $\left(x \cdot y^{\prime}+3 \cdot y=x^{3}, x, y\right) \quad y=\frac{x^{3}}{6}+\frac{c 4}{x^{3}}$

Students should now attempt to solve the four differential equation on pages 1.17-1.20.

1.13	1.14	1.15
On pages $1.17-1.20$		
equations for for mou to solve. You should solve		
each of these algebraically and enter your		
solution in the space provided. At this time,		
do NOT check your answers by using the		
CAS features of your calculator.		

1	1.16	1.17	1.18	1.19
$y^{\prime}-y=\cos (x)$				
1.17	1.18	1.19	1.20	RAD AUTO REAL REAL
$(x+3) y^{\prime}+2 y=2(x+3)^{2}$				

The solutions to the differential equations appear below.

$$
\begin{aligned}
& P(x)=2 x \text { and } Q(x)=4 x \\
& y=\frac{1}{u(x)}\left(\int Q(x) u(x) d x+C\right) \\
& y=\frac{1}{e^{x^{2}}}\left(\int\left(4 x e^{x^{2}}\right) d x+C\right) \quad \begin{array}{l}
u=x^{2} \\
y=\frac{4}{e^{x^{2}}}\left(\int\left(x e^{x^{2}}\right) d x+C\right) \quad d u=2 x d x \\
y=\frac{2}{e^{x^{2}}}\left(\int\left(e^{u}\right) d u+C\right) \\
y=\frac{2}{e^{x^{2}}}\left(e^{x^{2}}+C\right) \\
y=2+\frac{C}{e^{x^{2}}}
\end{array}
\end{aligned}
$$

$$
P(x)=-1 \text { and } Q(x)=\cos x
$$

$$
y=\frac{1}{u(x)}\left(\int Q(x) u(x) d x+C\right)
$$

$$
\begin{equation*}
y=\frac{1}{e^{-x}}\left(\int\left(e^{-x} \cos x\right) d x+C\right) \tag{parts.}
\end{equation*}
$$

Use integration by $y=\frac{1}{e^{-x}}\left(\frac{1}{2} e^{-x}(\sin x-\cos x)+C\right)$

$$
y=\frac{1}{2}(\sin x-\cos x)+C e^{x}
$$

$1.1 \quad 1.2$	1.3
1.4	RAD AUTO REAL
deSolve $\left(y^{\prime}=\mathbf{e}^{x^{3}}+3 \cdot x^{2} \cdot y, x, y\right) \quad y=(x+c 75) \cdot \mathrm{e}^{x^{3}}$	
Calculating the value of the integrating factor,	
$u(x)=e^{\int P(x) d x}$	
$u(x)=e^{\int-3 x^{2} d x}$	
$u(x)=e^{-x^{3}}$	

$$
P(x)=-3 x^{2} \text { and } Q(x)=e^{x^{3}}
$$

$$
y=\frac{1}{u(x)}\left(\int Q(x) u(x) d x+C\right)
$$

$$
y=\frac{1}{e^{-x^{3}}}\left(\int\left(e^{x^{3}} \cdot e^{-x^{3}}\right) d x+C\right)
$$

$$
y=\frac{1}{e^{-x^{3}}}\left(\int d x+C\right)
$$

$$
y=\frac{1}{e^{-x^{3}}}(x+C)
$$

$$
\begin{aligned}
& u(x)=e^{2 \int \frac{d x}{x+3}} \\
& u(x)=e^{2 \ln |x+3|} \\
& u(x)=(x+3)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& (x+3) y^{\prime}+2 y=2(x+3)^{2} \\
& y^{\prime}+\frac{2}{x+3} y=2(x+3) \\
& P(x)=\frac{2}{x+3} \text { and } Q(x)=2(x+3) \\
& y=\frac{1}{u(x)}\left(\int Q(x) u(x) d x+C\right) \\
& y=\frac{1}{(x+3)^{2}}\left(\int 2(x+3) \cdot(x+3)^{2} d x+C\right) \\
& y=\frac{2}{(x+3)^{2}}\left(\int(x+3)^{3} d x+C\right) \\
& y=\frac{1}{2(x+3)^{2}}\left((x+3)^{4}+C\right) \\
& y=\frac{(x+3)^{2}}{2}+\frac{C}{(x+3)^{2}}
\end{aligned}
$$

After the students have solved each of their differential equations algebraically, collect their solutions using the TI-Nspire Navigator system.

As you are showing the results to the four questions to the class, using the slide show within Class Analysis, discuss the different format that the answers have been expressed. It is important to point out to the students that answers may be equivalent and correct but look different.

While reviewing the results, you should have the students solve each of these differential equations using their TI-Nspire CAS handheld. Using the TI-Nspire Navigator system, select four different students to present their solutions to one of the four differential equations. Discuss the solution the calculator gave versus the one that was derived algebraically from the students.

