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It’s hard to not know just about all there is to know about the characteristics of the graph 
of the general quadratic (2nd degree polynomial) function. It’s a parabola that is either 
always concave up or always concave down. We can easily find its zeroes via the 
quadratic formula. And, as you probably learned in algebra, there is a formula for the 
vertex. If we define y2(x)=a*x^2+b*x+c, find the derivative and set it to zero and solve, 
possibly all in one step with our TI-89 in hand, we find that the vertex occurs at the point 
where x = -b/(2a). (See figure 0.) 
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But what do we know about cubic (3rd degree) and quartic (4th degree) functions? 
 
Exercise 0:  
• In figure 1 you see a cubic function that has three x-intercepts. How many critical 

points are there? How many inflection points? 
• In figure 2 you see a cubic function that has 1 x-intercept. How many critical points 

are there? How many inflection points? 
• In figure 3 you see a cubic function that has 1 x-intercept. How many critical points 

are there? How many inflection points are there? 
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You undoubtedly noticed that each cubic in figures 1 through 3 appears to have a single 
inflection point. 
 
 
Define y3(x)=a*x^3+b*x^2+c*x+d, the general cubic function, whose coefficients are 
a, b, c, and d. Give the command DelVar a,b,c,d before proceeding. 
 



Exercise 1: Prove that all cubic functions have exactly one inflection point. To do so, get 
a formula for its x-coordinate in terms of the coefficients of y3. [You will want to give the 
command d(y3(x),x,2), which computes the 2nd derivative of y3.] Put your formula to use to find the 
inflection point of 3 21( ) 4 6 5 3y x x x x= − − − . Then use your TI-89’s Inflection  point 
feature (see figure 4) to confirm that your formula worked.  
 
 
You might call the local maximum and minimum of the cubics in figures 1 and 2 
“vertices” because of their similarity in appearance to the vertices of parabolas, but they 
are not generally called that. Nevertheless, just as we found a formula for the vertex of a 
parabola earlier, you can find a formula for these local extrema (for a cubic that has 
them), while at the same time establishing the conditions under which a cubic will have 
them. 
 
Exercise 2: Prove that, in general, if a cubic function has a local maximum, then it has a 
local minimum, and vice versa. [It can’t have one without the other.] To do so, get a formula (in 
terms of the coefficients) for the critical points. Under what conditions (in terms of the 
coefficients) will there be both a local maximum and minimum? [To begin to answer all of 
these questions, you will want to give the command d(y3(x),x), which computes the derivative of y3.] Use 
your formula to find the extrema for 3 21 4 6 5 3y x x x= − − − . Then use your TI-89’s 
Minimum  and Maximum  features (see figure 4, menu options 3 and 4) to confirm that 
your formula worked.  
 
Do you see the rather striking similarity between the quadratic formula and the formula 
you just derived for finding the extrema of a cubic? Math just keeps getting better, 
doesn’t it! 
 
 
Exercise 3: Find the x-coordinate of the midpoint of the line segment connecting the local 
maximum and local minimum for any cubic that has them. [You will have gotten results in 
Exercise 2 that say x=… or x=…. If you move the cursor up so that result is highlighted and press �, 
you can use the cursor to insert parentheses and change the “or” to a “+”, like so: (x=…) + (x=…). After 
getting that result, you can then divide by 2.]  
 
Compare your result of Exercise with the result of Exercise 1. Is this surprising? Find the 
midpoint of the segment connecting the max and min points of the cubic 

3 21 4 6 5 3y x x x= − − −  of Exercise 2. Did you get the inflection point in Exercise 1? 
Trace to this midpoint for that function. Does it look right? 
 
 
Exercise 4: A common misconception is that if a function’s derivative is zero, then it has 
a local maximum or a minimum there. Produce a specific cubic function (choose specific 
values for the coefficients) for which the derivative is zero somewhere but that point is 
neither a maximum nor a minimum. Keep it simple. [You might want to use Exercises 2 and 1 
(in that order?) to help.] What kind of point is the critical point? Graph. Does it look right? 
 



 
Exercise 5: Use the results of Exercise 2 to determine, in general, the conditions under 
which y3'(x)=0 yet y3 has neither a maximum nor a minimum there. Give an example of 
such a cubic, specifying nonzero values for all of the coefficients. What is going on at 
such a point on such a cubic? Graph. Does it look right? 
 
 
Exercise 6: If y3'(z)=0 and y3"(z)=0, then what is going on at the point (z,y3(z))? Graph 
one such cubic. 
 
 
Now Define y4(x)=a*x^4+b*x^3+c*x^2+d*x+e , the general quartic function, whose 
coefficients are a, b, c, d, and e. Give the command DelVar a,b,c,d,e before proceeding. 
 
Exercise 7:  
• In figure 5 is a quartic function which has 4 distinct x-intercepts. How many critical 

points are there? How many inflection points? 
• In figure 6 is a quartic function which has 2 distinct x-intercepts. How many critical 

points are there? How many inflection points? 
• In figure 7 is a “complete graph” (all important characteristics are showing) of a 

quartic function with no x-intercepts. How many critical points are there? How many 
inflection points? 
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Clearly, quartics are more complex than cubics. The number of critical points can range 
from 1 to 3, while the number of inflection points can range from 0 to 2. And both can be 
a little hard to see (if they even exist), as figures 6 and 7 show. Unfortunately, because of 
the difficulty in analyzing cubic equations in general, there isn’t much to say about the 
critical points of a quartic, in general. 
 
 
Exercise 8: In terms of its coefficients, under what conditions will y4 have: 
• zero inflection points 
• one inflection point 



• two inflection points 
You will want to find the second derivative of y4 and see where it equals 0. This will 
give you a formula for determining the x-coordinates of any quartic that has inflection 
points. 
 
 
Exercise 9: While the formula you found in Exercise 8 is unwieldy at best, you can 
observe that there will be: 
• no inflection point only if the radicand is negative,  
• one (repeated) inflection point only if the radicand is zero, and 
• two distinct inflection points only if the radicand is positive 
 
Show that, if the radicand is zero, there can be no inflection point; hence the only 
possibilities (for quartics) are either 0 or 2 inflection points. [Hint: The second derivative is 
quadratic. Sometimes quadratics don’t change sign. When?] 
 
 
Exercise 10: Use the results of Exercises 8 and 9 to produce equations and graphs of 
quartics with 0 and 2 inflection points. Use the formula that you found and used to 
determine the number of inflection points in Exercise 8. Be sure to observe the necessary 
change in concavity for each of your functions. 
 
 
Exercise 11: While it is not possible to find a general formula for the critical points, play 
with the coefficients of y4 until you find graphs whose characteristics match those in 
figures 5 through 7. Then, if there are any, find the extrema and inflection points. Be sure 
to use your formula from Exercise 9 to find the inflection points. By all means use your 
’89 to confirm your answers. 
 
 
Exercise 12: If you have access to a powerful Computer Algebra System (such as 
Derive™), find a general solution to the general cubic equation, y3=0 (with y3 as defined 
earlier). [It’s a big mess, all right, but are you surprised that there is a formula? It is called Cardan’s 
Formula.] If your CAS can solve the general cubic equation, it can find a formula for the 
critical points of the general quartic. Do you think this formula is useful and/or usable? 
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