Definite Integrals and Area Under A Curve

by

Mary Ann Connors

Department of Mathematics Westfield State College Westfield, MA 01086

Textbook Correlation: Key Topic

- Definite Integrals
- Applications of Definite Integrals

NCTM Principles and Standards:

- Process Standard
 - Representation
 - Connections

Exercise 1.

Evaluate the area bounded by the curve $y = \sin(x)$ and the x-axis between

- a) $x = -\pi/2$ and x = 0.
- b) $x = 0 \text{ and } x = \pi/2.$
- c) $x = -\pi/2$ and $x = \pi/2$.

Solution:

Graphical Interpretation:

Enter the equation in the Y= editor. In the **Window** editor set the window size to $[-\pi, \pi] \times [-1.5, 1.5]$. **GRAPH** (\blacklozenge , **F3**). Choose **F5**, 7:($\int f(x) dx$).

a) Set the limits of integration as: Lower Limit = $-\pi/2$ and Upper Limit = 0.

Answer:

The area bounded by the curve $y = \sin(x)$ and the x-axis between $x = -\pi/2$ and x = 0 is -1.

b) Set the limits of integration as: Lower Limit = 0 and Upper Limit = $\pi/2$.

Answer:

The area bounded by the curve $y = \sin(x)$ and the x-axis between x = 0 and $x = \pi/2$ is 1.

c) Set the limits of integration as: Lower Limit = $-\pi/2$ and Upper Limit = $\pi/2$.

Answer:

The area bounded by the curve $y = \sin(x)$ and the x-axis between $x = -\pi/2$ and $x = \pi/2$ is 0.

Analytical Method:

Answer:

- a) The area bounded by the curve $y = \sin(x)$ and the x-axis between $x = -\pi/2$ and x = 0 is -1.
- b) The area bounded by the curve $y = \sin(x)$ and the x-axis between x = 0 and $x = \pi/2$ is 1.
- c) The area bounded by the curve $y = \sin(x)$ and the x-axis between $x = -\pi/2$ and $x = \pi/2$ is 0.

Exercise 2:

Compute the **total area** bounded by the curve $y = \sin(x)$ and the x-axis between $x = -\pi/2$ and $x = \pi/2$.

Solution:

To compute the total area, use the absolute value function as illustrated below.

Answer:

The total area bounded by the curve $y = \sin(x)$ and the x-axis between $x = -\pi/2$ and $x = \pi/2$ is 2.

Additional Exercises:

- 1. To evaluate the area bounded by the curve $y = x\sin(\pi x)$ and the x-axis between x = -1 and x = 1
 - a) graph the function on the relevant interval and interpret the value of the integral as an area or as the negative of an area, and
 - b) compute the definite integral.
- 2. Calculate the total area bounded by the curve $y = x\sin(\pi x)$ and the x-axis between x = -1 and x = 1.
- 3. To evaluate the area bounded by the curve $y = 15x^3(x-1)$ and the *x*-axis between x = 0 and x = 1
 - c) graph the function on the relevant interval and interpret the value of the integral as an area or as the negative of an area, and
 - d) compute the definite integral.
- 4. Calculate the total area bounded by the curve $y = 15x^3(x-1)$ and the *x*-axis between x = 0 and x = 1.