The Power of Trigonometric Integrals

Student Activity

7 8 9 10 11 12

Activity

Introduction

In this activity you will:

- evaluate definite integrals involving powers of trigonometric functions,
- derive a recurrence relation,
- Define a function to verify the results.

Definite integrals involving powers of the sine function.

Question: 1.

a) Evaluate each of the following:

i)
$$\int_{0}^{\frac{\pi}{2}} \sin(x) dx$$

ii) $\int_{0}^{\frac{\pi}{2}} \sin^{2}(x) dx$
iii) $\int_{0}^{\frac{\pi}{2}} \sin^{3}(x) dx$
iv) $\int_{0}^{\frac{\pi}{2}} \sin^{4}(x) dx$
v) $\int_{0}^{\frac{\pi}{2}} \sin^{5}(x) dx$

- b) A recurrence relation is an equation that recursively defines a sequence, the results in Part (a) form such a sequence.
 - i) Let $S(n) = \int_0^{\frac{\pi}{2}} \sin^n(x) dx$ use integration by parts to show that $S(n) = \frac{n-1}{n} S(n-2)$.
 - Use the recurrence relation, established in the previous question, to check your answers to (a)(iii) and (a)(v).
 - iii) Use the recurrence relation to find, S(6), S(7), S(8), S(9), S(10)
 - iv) Use CAS to check the values of S(n) for n = 1, 2, ..., 10.
 - v) Graph the results for S(n) versus *n*, for n = 1, 2, ..., 10.
 - vi) Verify that for *n* even, $S(n) = \frac{\pi}{4} \prod_{j=2}^{\frac{n}{2}} \left(\frac{2j-1}{2j}\right)$ and for *n* odd $S(n) = \prod_{j=1}^{\frac{n-1}{2}} \left(\frac{2j}{2j+1}\right)$, and hence write a

TI-Nspire function (not involving definite integrals) to evaluate S(n).

Definite integrals involving powers of the cosine function.

Question: 2.

- a) Use graphs to help explain why $\int_0^{\frac{\pi}{2}} \cos(x) dx = \int_0^{\frac{\pi}{2}} \sin(x) dx$
- b) Let $C(n) = \int_{0}^{\frac{\pi}{2}} \cos^{n}(x) dx$, show that C(n) = S(n) for n = 1, 2, ..., 5.
- c) Show that C(n) = S(n) for all $n \in \mathbb{Z}$.

Definite integrals involving powers of the tangent function.

Question: 3.

a) Evaluate each of the following:

i)
$$\int_{0}^{\frac{\pi}{4}} \tan(x) dx$$

ii) $\int_{0}^{\frac{\pi}{4}} \tan^{2}(x) dx$
iii) $\int_{0}^{\frac{\pi}{4}} \tan^{3}(x) dx$
iv) $\int_{0}^{\frac{\pi}{4}} \tan^{4}(x) dx$
v) $\int_{0}^{\frac{\pi}{4}} \tan^{5}(x) dx$

b) Let
$$T(n) = \int_0^{\frac{\pi}{4}} \tan^n(x) dx$$
 show that $T(n) = \frac{1}{n-1} - T(n-2)$. [Do not use integration by parts]

- c) Use the recurrence relation obtained in the previous question to check your answers to Q3(a).
- d) Use the recurrence relation to find: T(6), T(7), T(8), T(9), T(10), T(11), T(12), T(13).
- e) Use CAS to check the values of T(n) for n = 1, 2, ..., 13.
- f) Graph the results for T(n) versus *n*, for n = 1, 2, ..., 10.
- g) Define the function shown here and use it to verify that

when *n* is divisible by 4: $T(n) = \sum_{k=0}^{\frac{n}{2}-1} \left(\frac{(-1)^{k+1}}{2k+1} \right) + (-1)^{\frac{n}{2}} \frac{\pi}{4}$,

when *n* even and not divisible by 4: $T(n) = \sum_{k=0}^{\frac{n}{2}-1} \left(\frac{(-1)^k}{2k+1} \right) + (-1)^{\frac{n}{2}} \frac{\pi}{4}$,

and, when *n* is odd: $T(n) = (-1)^{\frac{n-1}{2}} \sum_{k=1}^{\frac{n-1}{2}} \left(\frac{(-1)^k}{2k} \right) + (-1)^{\frac{n-1}{2}} \frac{1}{2} \log_e(2).$

© Texas Instruments 2021. You may copy, communicate and modify this material for non-commercial educational purposes provided Author: Raymond Rozen all acknowledgements associated with this material are maintained.

