The Power of Trigonometric Integrals

Student Activity

$\begin{array}{llllll}7 & 8 & 9 & 10 & 11 & 12\end{array}$

Introduction

In this activity you will:

- evaluate definite integrals involving powers of trigonometric functions,
- derive a recurrence relation,
- Define a function to verify the results.

Definite integrals involving powers of the sine function.

Question: 1.

a) Evaluate each of the following:
i) $\int_{0}^{\frac{\pi}{2}} \sin (x) d x$
ii) $\int_{0}^{\frac{\pi}{2}} \sin ^{2}(x) d x$
iii) $\int_{0}^{\frac{\pi}{2}} \sin ^{3}(x) d x$
iv) $\int_{0}^{\frac{\pi}{2}} \sin ^{4}(x) d x$
v) $\int_{0}^{\frac{\pi}{2}} \sin ^{5}(x) d x$
b) A recurrence relation is an equation that recursively defines a sequence, the results in Part (a) form such a sequence.
i) Let $S(n)=\int_{0}^{\frac{\pi}{2}} \sin ^{n}(x) d x$ use integration by parts to show that $S(n)=\frac{n-1}{n} S(n-2)$.
ii) Use the recurrence relation, established in the previous question, to check your answers to (a)(iii) and (a)(v).
iii) Use the recurrence relation to find, $S(6), S(7), S(8), S(9), S(10)$
iv) Use CAS to check the values of $S(n)$ for $n=1,2, \ldots ., 10$.
v) Graph the results for $S(n)$ versus n, for $n=1,2, \ldots ., 10$.
vi) Verify that for n even, $S(n)=\frac{\pi}{4} \prod_{j=2}^{\frac{n}{2}}\left(\frac{2 j-1}{2 j}\right)$ and for n odd $S(n)=\prod_{j=1}^{\frac{n-1}{2}}\left(\frac{2 j}{2 j+1}\right)$, and hence write a TI-Nspire function (not involving definite integrals) to evaluate $S(n)$.

Definite integrals involving powers of the cosine function.

Question: 2.

a) Use graphs to help explain why $\int_{0}^{\frac{\pi}{2}} \cos (x) d x=\int_{0}^{\frac{\pi}{2}} \sin (x) d x$
b) Let $C(n)=\int_{0}^{\frac{\pi}{2}} \cos ^{n}(x) d x$, show that $C(n)=S(n)$ for $n=1,2, \ldots, 5$.
c) Show that $C(n)=S(n)$ for all $n \in Z$.

Definite integrals involving powers of the tangent function.

Question: 3.

a) Evaluate each of the following:
i) $\int_{0}^{\frac{\pi}{4}} \tan (x) d x$
ii) $\int_{0}^{\frac{\pi}{4}} \tan ^{2}(x) d x$
iii) $\int_{0}^{\frac{\pi}{4}} \tan ^{3}(x) d x$
iv) $\int_{0}^{\frac{\pi}{4}} \tan ^{4}(x) d x$
v) $\int_{0}^{\frac{\pi}{4}} \tan ^{5}(x) d x$
b) Let $T(n)=\int_{0}^{\frac{\pi}{4}} \tan ^{n}(x) d x$ show that $T(n)=\frac{1}{n-1}-T(n-2)$. [Do not use integration by parts]
c) Use the recurrence relation obtained in the previous question to check your answers to Q3(a).
d) Use the recurrence relation to find: $T(6), T(7), T(8), T(9), T(10), T(11), T(12), T(13)$.
e) Use CAS to check the values of $T(n)$ for $n=1,2, \ldots, 13$.
f) Graph the results for $T(n)$ versus n, for $n=1,2, \ldots, 10$.
g) Define the function shown here and use it to verify that
when n is divisible by 4: $T(n)=\sum_{k=0}^{\frac{n}{2}-1}\left(\frac{(-1)^{k+1}}{2 k+1}\right)+(-1)^{\frac{n}{2}} \frac{\pi}{4}$,
when n even and not divisible by 4: $T(n)=\sum_{k=0}^{\frac{n}{2}-1}\left(\frac{(-1)^{k}}{2 k+1}\right)+(-1)^{\frac{n}{2}} \frac{\pi}{4}$,
and, when n is odd: $T(n)=(-1)^{\frac{n-1}{2}} \sum_{k=1}^{\frac{n-1}{2}}\left(\frac{(-1)^{k}}{2 k}\right)+(-1)^{\frac{n-1}{2}} \frac{1}{2} \log _{e}(2)$.

