\qquad

What does it mean for expressions to be equivalent? This activity investigates expressions that are equivalent under certain conditions on the variable.

| 1.1 | 1.2 |
| :--- | :--- | :--- |
| Equivalent or Not Equivalent? | |

Move to page 1.2.

Press atrl and atrl \langle to
navigate through the lesson.

1. Find the value for each expression when
a. $x=2$.

$$
\frac{x^{2}}{x}=
$$

\qquad $\sqrt{x^{2}}=$ \qquad
$|x|=$ \qquad
b. $x=4$.

$$
\frac{x^{2}}{x}=
$$

\qquad $\sqrt{x^{2}}=$ \qquad
$|x|=$ \qquad
2. Based on your answers from question 1, predict the value for each expression when $x=15$.

$$
\frac{x^{2}}{x}=-\quad \sqrt{x^{2}}=\square \quad|x|=
$$

3. Find the value for each expression when
a. $\mathrm{x}=-3 . \quad \frac{x^{2}}{x}=$ \qquad $\sqrt{x^{2}}=$ \qquad
$|x|=$ \qquad
b. $x=-8$.

$$
\frac{x^{2}}{x}=
$$

\qquad $\sqrt{x^{2}}=$ \qquad
$|x|=$ \qquad
4. Based on your answers from question 3 , predict the value for each expression when $x=-20$.

$$
\frac{x^{2}}{x}=\square \quad \sqrt{x^{2}}=\square \quad|x|=
$$

\qquad
5. Find the value for each expression when $x=0$.
a. $\frac{x^{2}}{x}$
b. $\sqrt{x^{2}}$
c. $|x|$

Two algebraic expressions that are equal for every substituted value of the variable chosen from a set of numbers are said to be equivalent for that set of numbers.
6. a. Is the expression $\frac{x^{2}}{x}$ equivalent to x for the set of positive real numbers? Why or why not?
b. Is the expression $\frac{x^{2}}{x}$ equivalent to x for the set of negative real numbers? Why or why not?
c. Is the expression $\frac{x^{2}}{x}$ equivalent to x for the set of real numbers? Why or why not?
7. Tom says that the expression $\sqrt{x^{2}}$ is equivalent to x for the set of real numbers. Do you agree? Why or why not?
8. For what values of x are $\sqrt{x^{2}}$ and $|x|$ equivalent? Explain your reasoning.

