APPLICATION

1) Press your APPS key and locate Transfrm ENTER
2) Look at your $\mathrm{Y}=$ menu. Whenever your style sub menu looks like this it means that Transfrm is running.**certain games seem to make this a default

3) Press your WINDOW key and notice the new entry, SETTINGS.

Up arrow to reveal Transfrm menu

4) These three icons represent $>\|$ play and pause
$>$ slide show (my favorite)
\gg faster slide show
5) To use the APP enter a general form equation in $Y=$, such as:

$$
y=A X+B
$$

example:

WINDOW Up Arrow
play and pause

GRAPH

Now just press right and left arrow to change the value of A or down arrow to select B and then right and left arrow to change the value of B.

6) WINDOW Up Arrow

Select slide show

What this setting means is that the calculator will compute 5 screens starting with $B=-2$ continuing in increments of 1 until $B=+2$.
This will result in the following 5 equations:
$y=-4 x-2, y=-4 x-1, y=-4 x, y=-4 x+1$ and $y=-4 x+2$

These will continuously graph. To stop the slide show: ENTER CLEAR

One further feature: Trail On and Trail Off

It will be necessary to "uninstall" or exit Transfrm.

ENTER

All good. :)

"Slinking" around the sinusoids...

Objective: Students will collect sinusoidal data and use the Transform APPS to find a model of the form: $\mathrm{y}=\mathrm{A} \sin \mathrm{B}(\mathrm{x}-\mathrm{C})+\mathrm{D}$ that will fit their particular data.

Materials:
CBR or CBR2
TI-83+ or 84 with Transfrm APPS loaded
Slinky

Activity:

1. Connect the CBR to the TI calculator with the black link cord
2. Place the CBR on the floor. One student will move the slinky up and down over the CBR, while another group member operates the calculator.
*** Hint.. You will need to nudge the slinky along with a slight bit of wrist action to get consistent results.
3. Setting up the CBR:
a. Turn on the calculator and press APPS
b. Arrow down to CBR/CBL
c. Press ENTER, ENTER, RANGER
d. Press ENTER, then SETUPISAMPLE
e. Your settings should be as follows:

Realtime: no
Time(s): 3
Display: Dist
Begin On: ENTER
Smoothing: None
Units: Feet
f. Arrow to START NOW, Press ENTER
g. Follow screen directions to begin data collection

After the data is collected, a graph is displayed. Press ENTER. Choose repeat sample until you have an acceptable sinusoidal graph. QUIT.
**NOTE: L1 = TIME, L2 = DIST
To look at the graph you want to analyze , turn on [STAT PLOT] 1.
**Check to make sure Xlist is in L1 and Ylist is in L2.
Press ZOOM 9.

Make a sketch of your graph (label your axes!)

Finding a model in the form: $v=A \sin B(x-C)+D$

a. Press APPS and select Transfrm
b. Press $Y=$ and enter $y_{1}=A \sin (B(x-C)+D$
c. Press GRAPH. Note the A, B, C, D, on the screen
d. Press TRACE to move the cursor on the graph and answer the following questions:

What is the maximum distance between the slinky and the CBR? \qquad
How much time elapses between the "peaks" on the graph? \qquad
What is the minimum distance between the "valleys" on the graph? \qquad
How much time elapses between the "valleys" on the graph? \qquad
What is the distance between a "peak" and a "valley"? \qquad

Now press GRAPH

According to your model, what is the:

Amplitude \qquad

Period \qquad

Phase Shift \qquad

Vertical Shift \qquad

Write the equation for your model:

According to your model, how far from the CBR will the slinky be after 6.28 seconds?

Now let's try different values for:
A ---What
happened?
B ---What
happened?

C---What
happened?

D ---What
happened?

Press APPS, Transfrm, UNINSTALL

It's all good $;$

