Circular Functions Test 3A

Name:

7 8 9 10 11 12

Question: 1

If $\sec(x) = 3$ and $\frac{3\pi}{2} \le x \le 2\pi$, then $\sin(x)$ is equal to:

a)
$$\frac{-\sqrt{3}}{2}$$

b)
$$\frac{\sqrt{3}}{2}$$

c)
$$\frac{1}{3}$$

a)
$$-\frac{\sqrt{3}}{2}$$
 b) $\frac{\sqrt{3}}{2}$ c) $\frac{1}{3}$ d) $\frac{-2\sqrt{2}}{3}$ e) $\frac{2\sqrt{2}}{3}$

e)
$$\frac{2\sqrt{2}}{3}$$

Question: 2

If $\cot(\alpha) = 1 + \frac{1}{r}$ and $0 \le \alpha \le \frac{\pi}{2}$, then $\cos^2(\alpha)$ is equal to:

a)
$$\frac{x^2 + 2x + 1}{2x^2 + 2x + 1}$$

b)
$$\frac{x^2}{2x^2 + 2x + 1}$$

a)
$$\frac{x^2 + 2x + 1}{2x^2 + 2x + 1}$$
 b) $\frac{x^2}{2x^2 + 2x + 1}$ c) $\frac{x}{\sqrt{2x^2 + 2x + 1}}$ d) $\frac{x + 1}{\sqrt{2x^2 + 2x + 1}}$ e) $\frac{1}{x^2}$

$$\frac{x+1}{\sqrt{2x^2+2x+1}}$$
 e)

$$\frac{1}{r^2}$$

Question: 3

If $\sin(\alpha) = \frac{3}{5}$ and $0 \le \alpha \le \frac{\pi}{2}$, then $\sin(2\alpha)$ is equal to:

a)
$$\frac{6}{5}$$

b)
$$\frac{3}{10}$$

c)
$$\frac{12}{25}$$

d)
$$\frac{24}{25}$$

a)
$$\frac{6}{5}$$
 b) $\frac{3}{10}$ c) $\frac{12}{25}$ d) $\frac{24}{25}$ e) $\frac{7}{25}$

If $\sin(\alpha) = \frac{3}{5}$ and $\cos(\beta) = \frac{12}{13}$ where $\alpha \in \left[0, \frac{\pi}{2}\right]$ and $\beta \in \left[0, \frac{\pi}{2}\right]$ then $\cos(\alpha - \beta)$ is equal to:

a)
$$\frac{-8}{65}$$

b)
$$\frac{16}{65}$$
 c) $\frac{33}{65}$

c)
$$\frac{33}{65}$$

d)
$$\frac{63}{65}$$

e)
$$\frac{62}{65}$$

Question: 5

If $\sec(\alpha) = x$ and $\alpha \in \left(0, \frac{\pi}{2}\right)$ and $\sec(\beta) = x$ where $\beta \in \left(\frac{3\pi}{2}, \frac{5\pi}{2}\right)$ then β in terms of α is:

a)
$$2\pi + a$$

b)
$$2\pi - \alpha$$
 c) $2\pi \pm \alpha$

c)
$$2\pi \pm \alpha$$

d)
$$\pi + \alpha$$

e)
$$\pi \pm \alpha$$

Question: 6

Given y > x > 0 then $\tan \left(\sin^{-1} \left(\frac{x}{y} \right) \right)$ is equal to:

a)
$$\frac{y}{\sqrt{x^2 - y^2}}$$
 b) $\frac{x}{\sqrt{y^2 - x^2}}$ c) $\frac{x}{y - x}$ d) $\frac{\sqrt{y^2 - x^2}}{x}$ e) $\frac{\sqrt{y^2 - x^2}}{y}$

b)
$$\frac{x}{\sqrt{y^2 - x^2}}$$

c)
$$\frac{x}{y-x}$$

d)
$$\frac{\sqrt{y^2 - x^2}}{x}$$

e)
$$\frac{\sqrt{y^2 - x^2}}{y}$$

Texas Instruments 2015. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Question: 7

Given $0 \le x \le 1$ then $\sin\left(\sin^{-1}(x) + \sin^{-1}(\sqrt{1-x^2})\right)$ is equal to:

a)
$$\frac{\pi}{2}$$

b)
$$\pi$$
 c) 0

Question: 8

The graph of $y = \tan^{-1} \left(\frac{x}{2} \right)$ has asymptotes at:

a)
$$y = -2$$
 and $y = 2$

b)
$$x = -2$$
 and $x = 2$

c)
$$y = -\frac{\pi}{2}$$
 and $y = \frac{\pi}{2}$

d)
$$x = -\frac{\pi}{2}$$
 and $x = \frac{\pi}{2}$

e)
$$y = -\pi$$
 and $y = \pi$

Question: 9

Given the function defined by the rule: $f(x) = a + b \sin^{-1}(cx)$ where a, b and c are real, non-zero constants, then the maximal domain of f(x) is:

a)
$$\left[-c,c\right]$$

b)
$$\left[-\frac{a}{b}, \frac{a}{b}\right]$$

c)
$$\left[\frac{c(a-1)}{b}, \frac{c(1-a)}{b}\right]$$

d)
$$\left[-\frac{1}{c}, \frac{1}{c}\right]$$

e)
$$\left[-\frac{\pi}{2c}, \frac{\pi}{2c}\right]$$

Question: 10

Given the function defined by the rule: $f(x) = a + b \tan^{-1}(c(x-d))$ where a, b, c and d are real positive constants, then the range of f(x) is:

a)
$$[a-b,a+b]$$

b)
$$\left(-\infty,\infty\right)$$

c)
$$[a-b\pi, a+b\pi]$$

d)
$$\left(a - \frac{b\pi}{c}, a + \frac{b\pi}{c}\right)$$

e)
$$\left(a - \frac{b\pi}{2}, a + \frac{b\pi}{2}\right)$$