Circular Functions Test 3A

Name:

Student

Question: 1

If $\sec (x)=3$ and $\frac{3 \pi}{2} \leq x \leq 2 \pi$, then $\sin (x)$ is equal to:
a) $\frac{-\sqrt{3}}{2}$
b) $\frac{\sqrt{3}}{2}$
c) $\frac{1}{3}$
d) $\frac{-2 \sqrt{2}}{3}$
e) $\frac{2 \sqrt{2}}{3}$

Question: 2

If $\cot (\alpha)=1+\frac{1}{x}$ and $0 \leq \alpha \leq \frac{\pi}{2}$, then $\cos ^{2}(\alpha)$ is equal to:
a) $\frac{x^{2}+2 x+1}{2 x^{2}+2 x+1}$
b) $\frac{x^{2}}{2 x^{2}+2 x+1}$
c) $\frac{x}{\sqrt{2 x^{2}+2 x+1}}$
d) $\frac{x+1}{\sqrt{2 x^{2}+2 x+1}}$
e) $\frac{1}{x^{2}}$

Question: 3

If $\sin (\alpha)=\frac{3}{5}$ and $0 \leq \alpha \leq \frac{\pi}{2}$, then $\sin (2 \alpha)$ is equal to:
a) $\frac{6}{5}$
b) $\frac{3}{10}$
c) $\frac{12}{25}$
d) $\frac{24}{25}$
e) $\frac{7}{25}$

Question: 4
If $\sin (\alpha)=\frac{3}{5}$ and $\cos (\beta)=\frac{12}{13}$ where $\alpha \in\left[0, \frac{\pi}{2}\right)$ and $\beta \in\left[0, \frac{\pi}{2}\right)$ then $\cos (\alpha-\beta)$ is equal to:
a) $\frac{-8}{65}$
b) $\frac{16}{65}$
c) $\frac{33}{65}$
d) $\frac{63}{65}$
e) $\frac{62}{65}$

Question: 5

If $\sec (\alpha)=x$ and $\alpha \in\left(0, \frac{\pi}{2}\right)$ and $\sec (\beta)=x$ where $\beta \in\left(\frac{3 \pi}{2}, \frac{5 \pi}{2}\right)$ then β in terms of α is:
a) $2 \pi+\alpha$
b) $2 \pi-\alpha$
c) $2 \pi \pm \alpha$
d) $\pi+\alpha$
e) $\pi \pm \alpha$

Question: 6

Given $y>x>0$ then $\tan \left(\sin ^{-1}\left(\frac{x}{y}\right)\right)$ is equal to:
a) $\frac{y}{\sqrt{x^{2}-y^{2}}}$
b) $\frac{x}{\sqrt{y^{2}-x^{2}}}$
c) $\frac{x}{y-x}$
d) $\frac{\sqrt{y^{2}-x^{2}}}{x}$
e) $\frac{\sqrt{y^{2}-x^{2}}}{y}$

[^0]
Question: 7

Given $0 \leq x \leq 1$ then $\sin \left(\sin ^{-1}(x)+\sin ^{-1}\left(\sqrt{1-x^{2}}\right)\right)$ is equal to:
a) $\frac{\pi}{2}$
b) π
c) 0
d) -1
e) 1

Question: 8

The graph of $y=\tan ^{-1}\left(\frac{x}{2}\right)$ has asymptotes at:
a) $y=-2$ and $y=2$
b) $x=-2$ and $x=2$
c) $y=-\frac{\pi}{2}$ and $y=\frac{\pi}{2}$
d) $x=-\frac{\pi}{2}$ and $x=\frac{\pi}{2}$
e) $y=-\pi$ and $y=\pi$

Question: 9

Given the function defined by the rule: $f(x)=a+b \sin ^{-1}(c x)$ where a, b and c are real, non-zero constants, then the maximal domain of $f(x)$ is:
a) $[-c, c]$
b) $\left[-\frac{a}{b}, \frac{a}{b}\right]$
c) $\left[\frac{c(a-1)}{b}, \frac{c(1-a)}{b}\right]$
d) $\left[-\frac{1}{c}, \frac{1}{c}\right]$
e) $\left[-\frac{\pi}{2 c}, \frac{\pi}{2 c}\right]$

Question: 10

Given the function defined by the rule: $f(x)=a+b \tan ^{-1}(c(x-d))$ where a, b, c and d are real positive constants, then the range of $f(x)$ is:
a) $[a-b, a+b]$
b) $(-\infty, \infty)$
c) $[a-b \pi, a+b \pi]$
d) $\left(a-\frac{b \pi}{c}, a+\frac{b \pi}{c}\right)$
e) $\left(a-\frac{b \pi}{2}, a+\frac{b \pi}{2}\right)$

[^1]
[^0]: (C) Texas Instruments 2015. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

[^1]: (C) Texas Instruments 2015. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

