Ų,	Binomial Probabilities			
	BinomialProb.tns			

Name	
Class	

Problem 1 – Experimental probability

Table 1: Roll a die five times. Use the tally table to record if each result is a success (rolling a 6) or a failure (rolling a 1, 2, 3, 4, or 5). Repeat nine more times.

Success	Failure

Table 2: Use the tallies in Table 1 to record thenumber of successes and the percent of successesfor each of the 10 experiments.

	0	1	2	3	4	5
Number of Successes						
Percent of Successes						

Table 3: Complete the table below by simulating10 experiments using the **randBin** command.

	0	1	2	3	4	5
Number of Successes						
Percent of Successes						

Problem 2 – Theoretical probability

Table 4: Find binomPdf $\left(5, \frac{1}{6}\right)$ and complete the table.

	0	1	2	3	4	5
Percent						

1. Compare the experimental probabilities to the theoretical probabilities.

- **2.** Calculate binomPdf $\left(2, \frac{1}{6}\right)$ and binomPdf $\left(8, \frac{1}{6}\right)$.
- **3.** Explain how and why the probability distribution changes. Which gives a greater probability of exactly 2 successes? Explain your reasoning.

Binomial Probabilities

- **4.** Find binomPdf $\left(1, \frac{1}{6}, 2\right)$. Explain why you get this result.
- **5.** Use binomCdf $\left(5, \frac{1}{6}, 2\right)$ to find the probability of two or fewer successes.
- 6. Then find the probability of at least three successes.

Problem 3 – Using the formula

7. On page 3.1, or below, list all the arrangements of two successes and three failures in five trials. One arrangement is done for you.

SSFFF

- 8. What is the probability of each arrangement? Why?
- 9. How many arrangements are there?
- 10. What is the total probability of two successes in five trials?
- 11. What is the formula for finding a binomial probability?
- **12.** The probability of randomly guessing any correct answer on a multiple-choice test is 0.25. The test has 15 questions. Find the probability of guessing:
 - exactly 10 answers correctly
 - at least 10 answers correctly