\qquad
\qquad

Problem 1 - Experimental probability

Table 1: Roll a die five times. Use the tally table to record if each result is a success (rolling a 6) or a failure (rolling a 1, 2, 3, 4, or 5). Repeat nine more times.

Success	Failure

Table 2: Use the tallies in Table 1 to record the number of successes and the percent of successes for each of the 10 experiments.

	0	1	2	3	4	5
Number of Successes						
Percent of Successes						

Table 3: Complete the table below by simulating 10 experiments using the randBin command.

	0	1	2	3	4	5
Number of Successes						
Percent of Successes						

Problem 2 - Theoretical probability
Table 4: Find binomPdf $\left(5, \frac{1}{6}\right)$ and complete the table.

	0	1	2	3	4	5
Percent						

1. Compare the experimental probabilities to the theoretical probabilities.
2. Calculate binomPdf $\left(2, \frac{1}{6}\right)$ and $\operatorname{binomPdf}\left(8, \frac{1}{6}\right)$.
3. Explain how and why the probability distribution changes. Which gives a greater probability of exactly 2 successes? Explain your reasoning.

Binomial Probabilities

4. Find binomPdf $\left(1, \frac{1}{6}, 2\right)$. Explain why you get this result.
5. Use binomCdf $\left(5, \frac{1}{6}, 2\right)$ to find the probability of two or fewer successes.
6. Then find the probability of at least three successes.

Problem 3 - Using the formula

7. On page 3.1, or below, list all the arrangements of two successes and three failures in five trials. One arrangement is done for you.

SSFFF
8. What is the probability of each arrangement? Why?
9. How many arrangements are there?
10. What is the total probability of two successes in five trials?
11. What is the formula for finding a binomial probability?
12. The probability of randomly guessing any correct answer on a multiple-choice test is 0.25 . The test has 15 questions. Find the probability of guessing:

- exactly 10 answers correctly
- at least 10 answers correctly

