Exploring Parabolas

Student Activity

Name \qquad
Class

Problem 1 －Transformational Form of the Equation of a Parabola

Move to page 1．2．Read the information on the page．

Recall the equation of line in point slope form：

$$
y-y_{1}=a\left(x-x_{1}\right), \text { where a represents slope }
$$

Written differently，the linear equation above can take on the form：$y=a(x-h)+k$ where $x_{1}=h$ and $y_{1}=k$ ．

| 1.1 | 1.2 | 1.3 | ExploringPar－las ∇ | 如园 |
| :--- | :--- | :--- | :--- | :--- | :--- |

A graph of a quadratic function is a parabola． This graph is a symmetric curve where the maximum or minimum value occurs at the vertex， which is the highest or lowest point．

Standard form of a quadratic function is written as
$y=a x^{2}+b x+c$, where $a \neq 0$
Transformational form，or vertex form，can be even more useful for finding the vertex．

1．What is the difference between this linear equation and the quadratic function $y=a(x-h)^{2}+k$ ？

Move to page 1．4．Read the information on the page．
Using TI－Nspire technology，a parabola can be explored by grabbing（ （trr）圈）and translating \ddagger or changing $\% /$

Move to page 1．5．

Move the cursor until you see the symbol $\% /$ ．Observe the changes in both the graph and the equation．

2．For $y=a x^{2}$ ，if a is less than zero，the parabola \qquad ．
a．opens up
b．opens to the right
c．opens down
d．opens to the left

Problem 2 －The Role of the＂a＂Value

Move to page 2．1．Read the information on the page．
On page 2．2，select the up and down arrows next to $\mathbf{a}=$ ，to change the value of a for the parabola $d(x)=a x^{2}$ defined on the interval $-2 \leq x \leq 2$ ．

On pages 2.3 and 2．4，read the story＂The Parent Parabola＂．

Exploring Parabolas
Student Activity

Name

Class

3. What effect does changing the value of a in $y=a x^{2}$ have on the shape of the parabola?

It changes the \qquad .
a. horizontal scale factor or stretch
b. vertical scale factor or stretch
c. horizontal shift
d. vertical shift

Problem 3 - The Vertex of the Parabola

Move to page 3.1. Read the information on the page.
On page 3.2, drag the point V, to the vertex of the parabola given. When you are successful, you will receive a message. To generate a new parabola, select the up arrow at the bottom right of the screen. Move point V to the vertex for at least three different parabolas.

Move to page 3.3.

4. Consider the symmetry of a parabola. Identify the coordinates of the vertex for each parabola.

Move to page 3.4.

5. Is the vertex shown in the graph a minimum or a maximum?

Problem 4 - The Axis of Symmetry of a Parabola

Move to page 4.1. Read the information on the page.

For graphs of functions of the form $y=a x^{2}$, the vertex is at the origin and the axis of symmetry is the y axis, or $x=0$.

On page 4.2, select the up arrow next to Step, to see how the graph of $y=\frac{1}{2} x^{2}$ can be graphed by hand.

Problem 5 - Analyzing the Graph of a Parabola

Move to page 5.1. Read the information on the page.

On page 5.2, explore a quadratic function by grabbing the parabola near the vertex when \ddagger appears. Press menu > Analyze Graph > Analyze Conics > Vertices and Axes of Symmetry. To translate the parabola again, press tab to get select graph $\mathbf{f 1}$. Here you can change the parabola back to $f 1(x)=x^{2}$.

