MATHEMATICAL METHODS CAS

UNIT ONE

POLYNOMIAL DIVISION

You must use "by hand" skills as well as CAS in these examples.
TEXT Reference: Essential Mathematical Methods 1 \& 2, $4^{\text {th }}$ pg 115 Ex 6B

What is the remainder of this division? Discuss.
Give examples to support your findings. Use your "by hand" techniques to verify the CAS result.

INVESTIGATION OF POLYNOMIAL DIVISION

Let $\mathrm{P}(x)=x^{3}+3 x^{2}+2 x+1$. Find $P(1)$. Calculate the following $\frac{x^{3}+3 x^{2}+2 x+1}{x-1}$. Take note of the remainder.	Define $\mathbf{P}(x)=x^{\wedge} 3+3 x^{\wedge} 2+2 x+1$ Define can be found in F4 $\mathbf{P}(1)$ PropFrac($\mathbf{P}(\mathbf{x}) /(\mathrm{x}-1))$
Is there a relationship between $\mathrm{P}(1)$, the linear factor $(\mathrm{x}-1)$ and the polynomial division?	
Investigate for other values of x Eg: (i) Let $x=2,-2$ and find $P(x)$. Determine $\frac{P(x)}{(x+2)}$ and $\frac{P(x)}{(x-2)}$. (ii)Let $\mathrm{x}=-1,1$ and find $P(x)$. Determine $\frac{P(x)}{(x+1)}$ and $\frac{P(x)}{(x-1)}$ (iii)Let $\mathrm{x}=3,-3$ and find $P(x)$. Determine $\frac{P(x)}{(x+3)}, \frac{P(x)}{(x-3)}$. What have you found out?	
Can we generalise this for all linear diviso	
Use your CAS to determine what the remainder is when $\mathrm{P}(\mathrm{x})$ is divided by (x-a)	

Can the remainder of a polynomial division be determined without using the process of division? Discuss.

Can the remainder be determined if a polynomial $\mathrm{P}(\mathrm{x})$ is divided by $(\mathrm{x}-\mathrm{a})$?

What is the remainder if $\mathrm{P}(\mathrm{x})$ is divided by (ax-b)? Use your CAS to support your findings.

The Remainder Theorem State, in your own words, what the Remainder Theorem says.

Calculate $\frac{x^{3}-4 x^{2}+x+6}{x+1}$.	F6 \#2 NewProb Define $\mathbf{Q (x)}=\mathbf{x}^{\wedge} \mathbf{3}-\mathbf{4 x} \wedge \mathbf{2}+\mathbf{x}+\mathbf{6}$ PropFrac $\left(\left(\mathbf{x}^{\wedge} \mathbf{3}-\mathbf{4 x} \wedge \mathbf{2}+\mathbf{x}+\mathbf{6}\right) /(\mathbf{x}+\mathbf{1})\right)$
Is there a remainder?	

What are the factors of $x^{3}-4 x^{2}+x+6$?

What would you expect the value of $\mathrm{Q}(2)$ to be?

What would you expect the value of $\mathrm{Q}(3)$ to be?

The Factor Theorem. Give your own definition of the Factor Theorem.

