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Harmonic [nthe last chapter, you modeled the motion of an object when
Motion the only force acting on the object was gravity. In this chapter,
you will consider the case where there is another major force
acting on the object.

Introduction

If a mass m is attached to the end of a suspended spring, both gravity and the spring exert a force on
the mass. If the mass is left undisturbed, the force of the spring will balance the force of gravity and the
mass will hang motionless. This is called the equilibrium point of the spring. If you pull the spring
down from the equilibrium point, the net force on the mass will be in the upward direction. If you push
the mass up from the equilibrium point, the net force on the mass will be in the downward direction.
As the mass moves further from the equilibrium point, the net force on the mass will increase.

Hooke's law describes the net force on the mass. This law is F' = -ks, where F is the net force exerted
on the mass, s is the displacement of the spring and k is a constant that depends on the stiffness of the
spring. The negative sign in Hooke's law indicates the force of the spring is in the opposite direction of
the displacement.

If you pull the mass down from the equilibrium point and let go, the mass will oscillate up and down.
This is called harmonic motion. If the mass m of the hanging object is very large compared to the
mass of the spring, you can combine Hooke’s law with Newton's second law of motion (¥ = ma) to
obtain a differential equation that describes the displacement of the mass. This equation is:

§'=——35.
m
What should the graph of displacement look like? What is the equation that describes displacement as
a function of time? In the next example, you will use the differential equation to generate data that
model the displacement of the mass and then curve fit the data to find the equation for displacement.
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46  DIFFERENTIAL EQUATIONS WITH THE TI-86

Example 1: Fitting an Equation to a Graph of Spring Motion
it

the differential equation is
s'=—4s

for the displacement s of a mass attached to a hanging spring. If s(0) = —3 (initial displacement = 3
down) and s'(0) = 0 (initial velocity = 0), graph the displacement of the spring over time and then find
the equation for displacement as a function of time.

Solution

Make the following substitutions to reduce the differential equation to a system of first order
equations.

displacement = s=0I
velocity =s5'=0'1=02
acceleration =s5'=0"1=072=-40l
1. Enter the variables shown in Figures 5.1 through 5.6 to graph the solution to the differential
equation.
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Figure 5.7

Did you expect the graph in Figure 5.7? You are going to use the SinR (Sinusoidal Regression) feature
of the TI-86 to find an equation for this graph. In order to use regression, you need lists containing the
- and y- coordinates of points on the graph. You can generate these with the DrEqu feature found in
the GRAPH DRAW menu. This feature is similar to the EXPLR (Explore) feature in the GRAPH menu in
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CHAPTER 5: HARMONIC MoTion 47

that it allows you to specify initial conditions graphically and then graph the solution corresponding to
these initial conditions. DrEqu is different from EXPLR in that you can save the points generated on
the graph in two lists.

1.

Press (DRAW) to display the DrEqu

option. (Figure 5.8) fﬁ\ /’ﬁ
L/

A/

FORMT ITTTYN 200M TRACE EXPLR
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Figure 5.8
Press [F1] to paste this command to the home screen. DrEaud
(Figure 5.9)

Figure 5.9
DrEqu uses four parameters. The first two are the axes OrE=u(t. 81, LT L20N
used and the last two are the names of the lists to store
the x- and y- coordinates of the graph points. The axes are
t and Q1, and the two lists are L1 and L2. To enter these
parameters, press [T]1LJ QL]
L@ (L] @ (. (Figure 5.10) T
When you press [ENTER], you will see the cursor blinking
at the center of the screen, and the cursor coordinates /r“\ l{p
appear at the bottom of the screen. (Figure 5.11) / v

k=0 krizo

Figure 5.11
Move the cursor as close as possible to the initial 1
coordinatest = 0, Q1 = -3. (Figure 5.12) i J"P\. f‘“

=0 bri=-2.8032250806

Figure 5.12
When you press [ENTER], a graph with this initial point
will be drawn in thick style. (Figure 5.13) A JP

Bagin:
N

Figure 5.13

Since you don’t want to draw another graph, press [N]. The thick graph is essentially the same
one you already had. The reason you used DrEqu to redraw the graph is so you could store the
a and y coordinates of points on this graph in lists L1 and L2. You can then use these lists and
the sinusoidal regression feature of the TI-86 to find a sine function that fits the graph.
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10.

11.

12

Press [STAT] [F1] (CALC) (SinR) to paste
the sinusoidal regression command to the home screen.
(Figure 5.14)

SinR has three parameters. The first two parameters
are the lists containing the data to be analyzed. The
third parameter is the name of the variable used to
store the regression equation. (This third parameter is
optional.) Enter these parameters by pressing [L]
[0 1[L] ZI1-1 [Y] ¥ (Figure 5.15)

Press and, after a pause, the coefficients of the
sine function that best fits the data are displayed on the
screen. (Figure 5.16)

You can see the other coefficients by scrolling to the
right using [»].

The sine function that models the oscillating mass
appears to be approximately

y=2.895sin(2x—1571),

where ¥y is displacement and x is time. This function has
been stored in y1.

If you select Radian on the mode settings screen and
then enter the command DrawF y1 on the home
screen, the graph of y1 will be drawn on the same
screen with the graph of Q1. Since the two graphs
appear to coincide for values of x greater than zero, you
have found the equation for displacement of the mass as
a function of time. (Figures 5.17 and 5.18)

DrEsuct,R1-L1.030
Sink N

Figure 5.14
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Figure 5.15

SinkRed
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Figure 5.16
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Figure 5.17

Figure 5.18

In the next example, you will examine the relationship between displacement and velocity for the
oscillating mass.
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CHAPTER 5: HaRMONIC MoTion 49

Example 2: Phase Trajectories for Spring Motion

If you use the same setup and initial conditions as Example 1,
what will be the effect on the graph of changing the axes to x
=Q1, y = Q27 (Figure 5.19)

k)= WIND  INITC IEFIS GRAFH
o

Figure 5.19

Solution

Recall that Q1 = displacement and Q2 = velocity. The initial displacement is -3 and the initial velocity
is 0, so the graph should start at the point ( ~3,0). The mass begins to move up while the velocity
increases until the mass reaches the equilibrium point. After passing the equilibrium point, the mass
continues to move up but the velocity decreases because the spring opposes the motion of the mass.
This means 2 should increase while y first increases and then decreases.

What will happen after the mass reaches the top of its path? Sketch the graph of displacement versus
velocity. Support your sketch with a graph by making the changes shown in Figure 5.18 and graphing
the solution.

Does your graph look like Figure 5.207

Review the solution to Example 2 until you understand why the
graph is a circle. The plane in which this graph is drawn is
called a phase plane and the graph is called a phase trajectory
or an orbit.

Figure 5.20

CoordUtt
Axes0ff

r1d0n
Labelln

1. You can see the effect of various initial conditions with
the DirFld (Direction Field) feature. Select this mode
by highlighting DirFld i*on the format screen and
pressing [ENTER]. (Figure 5.21)

Figure 5.21

2. Select the axes editor and verify that x = Ql and y = Q2. H§531 DirFld
Notice this menu shows that the Direction Field has u=G2
been selected. The fldRes variable determines the
resolution of the direction field. The dTime variable
will be discussed in a later chapter. (Figure 5.22)

@kiz WIND  INITC YT GRAFH

3. Press (GRAPH) to see the direction field.
(Figure 5.23)

The direction field is like a slope field. If you start at

any point in the phase plane and move so your path is
tangent to the nearby line segments, you will trace out
an orbit. Figure 5.23
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50 DIFFERENTIAL EQUATIONS WITH THE TI-86

4. You can use the EXPLR feature in the GRAPH menu to
select different initial conditions graphically and see the
resulting orbit. When you are finished with the EXPLR
feature, you can press to return to the GRAPH
menu. (Figures 5.24 and 5.25)

The smaller circle corresponds to the mass oscillating
with a smaller amplitude.

Figure 5.25

In the next example, you will model an effect that dampens the amplitude of the mass as it oscillates.

Example 3: Damped Motion

In the previous spring example, you ignored forces of friction that might oppose the motion of the
oscillating mass. Air resistance provides such a frictional force. If you assume the force due to air
resistance is directly proportional and opposed to the velocity of the mass you obtain the following

differential equation for displacement s:

In this equation k is the spring constant, m is the mass of the object and ¢ is the constant of

proportionality for air resistance. If

L =4and <=05

m m
predict the motion of the spring. Support your prediction graphically.
Solution

The system of differential equations that includes air resistance is

displacement = s=Ql
velocity =5=01=02
acceleration =s5'"'=0"1=072=-401-502

1. Enter this system in the differential equation editor
(Q(t) = screen). (Figure 5.26)

Flotl Flotz Flots
NG 1EEZ
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Figure 5.26
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2. Select FIdOff. (Figure 5.27) J'r b Hggggggﬂ‘
GridOn

Label0n

Figure 5.27

3. Selectx = t, y = Q1 in the axes editor. (Figure 5.28) H§§§= Fldoty
u=G1

RUkI=  WIND  INITC RT3 GRAFH
[r] ] [v 1l

Figure 5.28

4. Keep the same viewing window and initial conditions as
Example 1 and then graph the solution of displacement
versus time. (Figure 5.29)

Did you predict the damped oscillations?

Figure 5.29
g LoordUtt
1y Axes0ff
GridOn

What will the phase plane and orbit look like for the
damped oscillations? Sketch your prediction.

5. Turn the direction field (DirFld) on in the format
screen and select x = Q1, y = Q2 in the axes editor.
(Figures 5.30 and 5.31)

Figure 5.30
A=ES: DirFId
x:

dTime=8
fldRes=15

@UE= WIND  INITC IRFTFE GRAFH

Does your sketch look like Figure 5.327

Figure 5.32

Why does the orbit spiral in? What will happen if you increase NEHE’EEE‘
tMax in the window editor? (Figure 5.33)

Figure 5.33
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52  DIFFERENTIAL EQUATIONS WITH THE TI-86

The spiral into the origin shows the spring reaching equilibrium
as the amplitude of the oscillations approaches zero. (Figure
5.34)

You can see this effect in the displacement versus time graph
by turning FIdOff and changing xMax to 15. It appears the
mass reaches equilibrium after about four oscillations.
(Figure 5.35)

Remember this graph shows how displacement is related to
time but it does not show the actual motion of the mass.

.
et e s B, S, S, N

Figure 5.34
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e

Figure 5.35

In the last example, you will learn how to model the actual motion of the mass.

Example 4: Animation

Create a model for the actual motion of the mass and spring (including air resistance) that was

described in Example 3.
Solution

This graph should show the mass oscillating straight up and
straight down. This is essentially an animation. You can create
this effect with the animation graphing style by making the
selections in the differential equation editor (Q'(t) = screen)
and the axes editor shown at the right.

1. Enter Q'3 = 0 in the differential equation editor
and select the animation graphing style. (Figure 5.36)

2. Enter QI3 = 1 in the initial conditions editor. (Figure
5.37)

3. Select Euler and FIdOff on the format screen.
(Figure 5.38) Selecting Euler sacrifices some accuracy
in the solution to the differential equation but makes
the animation run more smoothly.

Selecting Euler mode creates a new variable in the
window editor called EStep. The current value of
EStep is 1. Larger values for EStep will result in
better accuracy but slower graphs. (Figure 5.39)
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Figure 5.36

COMDITIONS

Figure 5.37
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Figure 5.38
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dMax=6
JScl=1
ESter=10

Figure 5.39
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4.

Select x = Q3 and y = Q1 in the axes editor. (Figure 5.40)

When you select x = Q3 and y = Q1 in the axes editor,
you will produce a graph in which the x-coordinate is
always 1 and the y-coordinate is the displacement.
Since the graphing style for Q3 is animation, you
should see an animation of the mass when you press
[GRAPH]. The animation shows the damped
oscillations of the mass. (Figures 5.41 and 5.42)

When the animation is finished, the circle disappears. If
you would like to see the animation again, select
CIDrw in the GRAPH DRAW menu. This clears the
graph screen and then redraws the graph.

HxES: Fldott
=03

Gikd= WIND  INITC IEVTS GRAFH

Figure 5.40

Figure 5.41

Figure 5.42

Now use what you have learned in this chapter to model the following harmonic motion problems.
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Exercises

In the following exercises, be sure to use RK mode in the GRAPH FORMAT menu for any graphs other
than animations. Since oscillations are very sensitive to the numerical method used, you will need to
use RK mode or Euler mode with a very large value for EStep for the animations, otherwise the
oscillations may diverge instead of converging.

1. An oscillating spring is modeled by the differential equation

d.

f.

s'=—6s s(0)=4 s'(0)=0, where s is displacement.

In differential equation graphing mode, graph displacement versus time.

Regraph the solution using Draw Equation (DrEqu) and store the x and y coordinates in
lists L1 and L2.

Use Sinusoidal Regression (SinR) on the lists to find the analytic solution to the differential
equation.

Use Draw Function (DrawF) to compare the solution in ¢ with the solution in a.
Animate the actual motion of the spring.

Draw the phase plane and orbit for displacement versus velocity.

2.  An oscillating spring is modeled by the differential equation

s'==5s s(0)=-2 4'(0)=0, where s is displacement.
In differential equation graphing mode, graph displacement versus time.

Regraph the solution using Draw Equation (DrEqu) and store the x and y coordinates in
lists L1 and L2.

Use Sinusoidal Regression (SinR) on the lists to find the analytic solution to the differential
equation.

Use Draw Function (DrawF) to compare the solution in ¢ with the solution in a.
Animate the actual motion of the spring.

Draw the phase plane and orbit for displacement versus velocity.

3. A damped oscillating spring is modeled by the differential equation

s''=—6s-2s5" s(0)=4 s'(0)=0, where s is displacement.
In differential equation graphing mode, graph displacement versus time.

How long will it take for the oscillations to diminish to one-fourth of their original
amplitude? '

Draw the phase plane and orbit for displacement versus velocity.
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An oscillating spring is modeled by the differential equation
s'"'=-65-5s" s5(0)=4 5'(0)=0, where s is displacement.
a. Indifferential equation graphing mode, graph displacement versus time.
b. Draw the phase plane and orbit for displacement versus velocity.

c.  This spring is said to be overdamped. Describe the motion of an overdamped spring.
Animate the motion of the spring to confirm your description. What could cause this type of
damping?
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