Class		

Problem 1 – Simulation – Experimental Probability

Mikel, a calico cat, is expecting kittens. Calico coloring is limited to females only. Help determine the probability of having five female calico cats. You and your partner will flip a coin 5 times for 50 trials where a head represents a female and a tail represents a male.

1. The calculator can very quickly (and quietly) flip coins for you. Press PRGM and choose COINFLIP. Select option 1:SIMULATION. Enter the number of flips, 5, and press ENTER. Record your results of 50 trials in the table.

	Tally of Results	Total
5 Females		
4 Females		
3 Females		
2 Females		
1 Female		
0 Females		

2.	Which outcomes seem to be occurring most often? Why do you think this is happening?
3	Which outcomes seem to be occurring least often? Why do you think this is
J.	happening?
4.	According to the experiment above, what is the probability that Mikel will have all female kittens?

Problem 2 - The Class Data

5. Enter the class data below.

	T1	T2	Т3	T4	T5	T6	T7	T8	Т9	T10	T11	T12	T13	T14	T15	Total
5F																
4F																
3F																
2F																
1F																
0F																

6. Press ENTER and choose 2:ENTER DATA. This will set up lists CATS, TFREQ, and CFREQ. Press LIST. Enter the data gathered by the team, TFREQ, and by the class, CFREQ.

7.	Find the probability of Mikel having all female kittens using the class data.
8.	How does this probability compare to the probability in Question 4?
9.	Which outcome(s) occurred the most using the class data?
•	

Problem 3 – Creating Bar Graphs

10. Create bar graphs of the data. Set up Plot 1 as shown at the right. Set up Plot 2 using CFREQ as the DataList1.

Draw your bar graphs at the right.

	o the bar g P How are t	•	ent?	ney

Problem 4 – Theoretical Probability

12. Next, you will find all the possible combinations of kittens. Complete the table below.

5 Females	4 Females	3 Females	2 Females	1 Female	0 Females
Outcomes	Outcomes	Outcomes	Outcomes	Outcomes	Outcomes
FFFFF	MFFFF				
	FMFFF				
	FFMFF				

13. How many total outcomes are shown in the table?	
---	--

14. Determine the theoretical probability of each event occurring. Complete the table. Enter the probabilities in the list called **PROB**.

Kitten Families	Probability as a Fraction
5 females	
4 females	
3 females	
2 females	
1 female	
0 females	

15. Multiply PROB by 1,000 and store in PRED. Create a bar graph (Plot 3)	of the class
data (CFREQ) and the predicted data (PRED).	

What do you observe about the two graphs? How are they similar?	