Complex Numbers Test 4A Name: 7 8 9 10 11 12 **Nume:** Navigator Navigator Name: $x = 2\sqrt{3} \& y = -2\sqrt{3}$ **Nume:** $x = 2\sqrt{3} \& y = -2\sqrt{3}$ **Nume:** $x = 2\sqrt{3} \& y = -2\sqrt{3}$ **Nume:** $x = 2\sqrt{3} \& y = -2\sqrt{3}$ **Nume: Nume: Num: Num: Num: Num: Num: Num: Num: Num:**

a) $x = 2\sqrt{3} & x = -2\sqrt{3}$ b) $x = -2\sqrt{3} & y = 2\sqrt{3}$ c) $x = 2\sqrt{3} & y = 2\sqrt{3}$ d) $x = -3\sqrt{2} & y = 3\sqrt{2}$ e) $x = 3\sqrt{2} & y = -3\sqrt{2}$

Question: 2

If $z_1 = a + bi$ and $z_2 = c + di$ which one of the following relationships is true:

a) $\overline{z_1} - \overline{z_2} = \overline{z_1 - z_2}$ b) $\overline{z_1} z_2 = z_1 \overline{z_2}$ c) $\sqrt{z_1^2} = |z_1|$ d) $\frac{1}{z_1} + \frac{1}{z_2} = \overline{z_1} + \overline{z_2}$ e) $|z_1| + |z_2| = z_1 \overline{z_1} + z_2 \overline{z_2}$

Question: 3

If
$$(3\sqrt{3}+3i)(4\sqrt{5}-4\sqrt{5}i) = rcis(\theta)$$
 then θ is equal to:
a) $\frac{5\pi}{12}$ b) $-\frac{5\pi}{12}$ c) $\frac{\pi}{12}$ d) $-\frac{\pi}{12}$ e) $\frac{\pi}{5}$

Question: 4

If z = -a - ai where $a \in R^+$ then $\operatorname{Arg}(z^5)$ is equal to:

a) $\left(-\frac{3\pi}{4}\right)^5$ b) $-\frac{5\pi}{4}$ c) $-\frac{15\pi}{4}$ d) $-\frac{\pi}{4}$ e) $\frac{\pi}{4}$

Question: 5

If
$$z = 3\operatorname{cis}\left(\frac{\pi}{7}\right)$$
 then $(\overline{z})^{-1}$ is equal to:
a) $\frac{1}{3}\operatorname{cis}\left(\frac{\pi}{7}\right)$ b) $\frac{1}{3}\operatorname{cis}\left(-\frac{\pi}{7}\right)$ c) $\frac{1}{3}\operatorname{cis}\left(\frac{7}{\pi}\right)$ d) $-3\operatorname{cis}\left(-\frac{7}{\pi}\right)$ e) $-3\operatorname{cis}\left(\frac{7}{\pi}\right)$

Question: 6

Given
$$\sin(\theta) - i\cos(\theta) = cis\left(\theta - \frac{\pi}{2}\right)$$
 then $(\sin(\theta) - i\cos(\theta))^{12}$ could be written as:
a) $cis(12\theta)$ b) $-cis(12\theta)$ c) $cis(-12\theta)$ d) $-cis(-12\theta)$ e) None of these

© Texas Instruments 2016. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

a=5 and c=3

a = 4 and c = 2

Question: 7

If
$$P(z) = z^3 + az^2 + 8z + 6$$
, given $z + 1 - i$ and $z + c$ are factors where $a, c \in R$ then it follows:

b)

d)

- a) a=2 and c=0
- c) a=8 and c=6
- e) a = -8 and c = 6

Question: 8

If P(z) is a polynomial in z of degree 5 with real coefficients, then which one of the following could be true?

- a) P(z) = 0 can have two real roots and three complex roots.
- b) P(z) = 0 can have three real roots and one pair of complex conjugates roots
- c) P(z) = 0 can have four real roots and one complex root.
- d) P(z) = 0 can have five complex roots.
- e) P(z) = 0 can have no real roots.

Question: 9

Which one of the following is **NOT** a solution to: $z^6 - 64 = 0$

a)
$$2\operatorname{cis}\left(\frac{\pi}{3}\right)$$
 b) $2\operatorname{cis}(\pi)$ c) $2\operatorname{cis}\left(\frac{\pi}{6}\right)$ d) $1-\sqrt{3}i$ e) $-1+\sqrt{3}i$

Question: 10

The set of points in the complex plane defined by |z-4| = |z+2i| corresponds to:

- a) A circle with centre 4-2i and radius 1
- b) A circle with centre -4+2i and radius 1
- c) A point given by 4-2i
- d) A point given by -4+2i
- e) A straight line given by Im(z) + 2Re(z) = 3

