Complex Numbers Test 4A

Name:

Student

Question: 1

If $(x-y i)^{2}=-24 i$ and $x, y \in R$ then x and y could be:
a) $x=2 \sqrt{3} \& y=-2 \sqrt{3}$
b) $x=-2 \sqrt{3} \quad \& \quad y=2 \sqrt{3}$
c) $x=2 \sqrt{3} \quad \& \quad y=2 \sqrt{3}$
d) $x=-3 \sqrt{2} \quad \& \quad y=3 \sqrt{2}$
e) $x=3 \sqrt{2} \& y=-3 \sqrt{2}$

Question: 2

If $z_{1}=a+b i$ and $z_{2}=c+d i$ which one of the following relationships is true:
a) $\bar{z}_{1}-\bar{z}_{2}=\overline{z_{1}-z_{2}}$
b) $\bar{z}_{1} z_{2}=z_{1} \bar{z}_{2}$
c) $\sqrt{z_{1}^{2}}=\left|z_{1}\right|$
d) $\frac{1}{z_{1}}+\frac{1}{z_{2}}=\bar{z}_{1}+\bar{z}_{2}$
e) $\quad\left|z_{1}\right|+\left|z_{2}\right|=z_{1} \bar{z}_{1}+z_{2} \bar{z}_{2}$

Question: 3
If $(3 \sqrt{3}+3 i)(4 \sqrt{5}-4 \sqrt{5} i)=r c i s(\theta)$ then θ is equal to:
a) $\frac{5 \pi}{12}$
b) $-\frac{5 \pi}{12}$
c) $\frac{\pi}{12}$
d) $-\frac{\pi}{12}$
e) $\frac{\pi}{5}$

Question: 4

If $z=-a-a i$ where $a \in R^{+}$then $\operatorname{Arg}\left(z^{5}\right)$ is equal to:
a) $\left(-\frac{3 \pi}{4}\right)^{5}$
b) $-\frac{5 \pi}{4}$
c) $-\frac{15 \pi}{4}$
d) $-\frac{\pi}{4}$
e) $\frac{\pi}{4}$

Question: 5
If $z=3 \operatorname{cis}\left(\frac{\pi}{7}\right)$ then $(\bar{z})^{-1}$ is equal to:
a) $\frac{1}{3} \operatorname{cis}\left(\frac{\pi}{7}\right)$
b) $\frac{1}{3} \operatorname{cis}\left(-\frac{\pi}{7}\right)$
c) $\frac{1}{3} \operatorname{cis}\left(\frac{7}{\pi}\right)$
d) $-3 \operatorname{cis}\left(-\frac{7}{\pi}\right)$
e) $\quad-3 \operatorname{cis}\left(\frac{7}{\pi}\right)$

Question: 6
Given $\sin (\theta)-i \cos (\theta)=\operatorname{cis}\left(\theta-\frac{\pi}{2}\right)$ then $(\sin (\theta)-i \cos (\theta))^{12}$ could be written as:
a) $\operatorname{cis}(12 \theta)$
b) $-\operatorname{cis}(12 \theta)$
c) $\operatorname{cis}(-12 \theta)$
d) $-\operatorname{cis}(-12 \theta)$
e) $\begin{aligned} & \text { None of } \\ & \text { these }\end{aligned}$
(C) Texas Instruments 2016. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Question: 7

If $P(z)=z^{3}+a z^{2}+8 z+6$, given $z+1-i$ and $z+c$ are factors where $a, c \in R$ then it follows:
a) $a=2$ and $c=0$
b) $a=5$ and $c=3$
c) $a=8$ and $c=6$
d) $\quad a=4$ and $c=2$
e) $a=-8$ and $c=6$

Question: 8

If $P(z)$ is a polynomial in z of degree 5 with real coefficients, then which one of the following could be true?
a) $\quad P(z)=0$ can have two real roots and three complex roots.
b) $\quad P(z)=0$ can have three real roots and one pair of complex conjugates roots
c) $\quad P(z)=0$ can have four real roots and one complex root.
d) $\quad P(z)=0$ can have five complex roots.
e) $\quad P(z)=0$ can have no real roots.

Question: 9

Which one of the following is NOT a solution to: $z^{6}-64=0$
a) $2 \operatorname{cis}\left(\frac{\pi}{3}\right)$
b) $2 \operatorname{cis}(\pi)$
c) $2 \operatorname{cis}\left(\frac{\pi}{6}\right)$
d) $1-\sqrt{3} i$
e) $-1+\sqrt{3} i$

Question: 10

The set of points in the complex plane defined by $|z-4|=|z+2 i|$ corresponds to:
a) A circle with centre $4-2 i$ and radius 1
b) A circle with centre $-4+2 i$ and radius 1
c) A point given by $4-2 i$
d) A point given by $-4+2 i$
e) A straight line given by $\operatorname{Im}(z)+2 \operatorname{Re}(z)=3$

