\qquad
\qquad

Problem 1 - The Derivative of $\boldsymbol{y}=\boldsymbol{\operatorname { l n }}(\boldsymbol{x})$

If (x, y) is a point on $y=f(x)$ and $y=g(x)$ is the inverse of $f(x)$, then (y, x) is a point on $g(x)$. We know that $e^{0}=1$ and $\ln (1)=0$, so $(0,1)$ is a point on $y=e^{x}$ and $(1,0)$ is a point on $y=\ln (x)$. We could do this for several points and keep getting the same inverse results.

Thus, if $y=e^{x}$, then $x=e^{y}$ will be equivalent to $y=\ln (x)$ because they are inverses of one another. Now we can take the implicit derivative with respect to x of $x=e^{y}$.
$x=e^{y} \rightarrow 1=\frac{d y}{d x} \cdot e^{y} \rightarrow 1=\frac{d y}{d x} \cdot x \rightarrow \frac{1}{x}=\frac{d y}{d x}$

Use the limit command to test this formula. Be careful with your parentheses.

- Find $\lim _{h \rightarrow 0} \frac{\ln (2+h)-\ln (2)}{h}$.
- Do the same with $\lim _{h \rightarrow 0} \frac{\ln (3+h)-\ln (3)}{h}$.

-	FiAD Alda	FUNE		13

- What is $\lim _{h \rightarrow 0} \frac{\ln (x+h)-\ln (x)}{h}$?
- Use the derivative command to find the derivative of the logarithmic function $f(x)=\ln (x)$.

Problem 2 - The Derivative of $\boldsymbol{y}=\log _{a}(\boldsymbol{x})$

What happens if our logarithm has a base other than e ?
We need to know how to take the derivative of the function $y=\log _{a}(x)$.

First we want to compare $\mathbf{y 1}=\ln (x)$ and $\mathbf{y} \mathbf{2}=\log _{2}(x)$.
To enter $\log _{2}(x)$, use the alpha keys to spell out log.
Within the parentheses, enter the expression, then the
 base.

- Graph both functions $(\mathbf{y} \mathbf{1}=\ln (x)$ and $\mathbf{y} \mathbf{2}=$ $\log _{2}(x)$) on the same set of axes. Sketch your graph to the right. What do you notice?
- Do the same steps with $\mathbf{y 1}=\ln (x)$ and y3 $=\log _{4}(x)$. What do you notice?

- Simplify the following ratios.
$\frac{\ln (x)}{\log _{2}(x)}$
$\frac{\ln (x)}{\log _{4}(x)}$
$\frac{\ln (x)}{\log _{a}(x)}$

Sometimes the ratio $\frac{\ln (x)}{\log _{a}(x)}$ is written as $\ln (x)=\ln (a) \cdot \log _{a}(x)$. We can rewrite this ratio as $\log _{a}(x)=\frac{\ln (x)}{\ln (a)}$ and call it an identity.

- Graph the following functions on the same set

What happens when we take the derivative of $y=\log _{a}(x)$. Use the derivative command to find the derivatives of the functions below.
$f(x)=\log _{2}(x)$
$g(x)=\log _{3}(x)$
$h(x)=\log _{a}(x)$

- Do you notice a pattern?

The Logarithmic Derivative

What does $\log _{2}(e)$ equal? If we use the formula from earlier in this class, we get $\log _{2}(e)=\frac{\ln (e)}{\ln (2)}=\frac{1}{\ln (2)}$.

Therefore, the general result is $y=\log _{a}(x) \rightarrow \frac{d y}{d x}=\frac{1}{(x \ln (a))}$.
Problem 3 - Derivative of Exponential and Logarithmic Functions Using the Chain Rule Now we want to take the derivative of more complicated functions:

Recall: $y=a^{u} \rightarrow \frac{d y}{d x}=a^{u} \frac{d u}{d x}$ where u depends on x.

- Suppose that $y=\log _{a}(u)$, where u depends on x. Using the chain rule, take the derivative of this function.

Find the derivative of the following functions with the chain rule.
Identify $u(x)$ and a for each function before you find the derivative.

- $f(x)=5^{\left(x^{2}\right)}$
$u(x)=$ \qquad $a=$ \qquad
$f^{\prime}(x)=$ \qquad
- $g(x)=e^{\left(x^{3}+2\right)}$
$u(x)=$ \qquad $a=$ \qquad $g^{\prime}(x)=$ \qquad
- $h(x)=\log _{3}\left(x^{4}+7\right)$
$u(x)=$ \qquad $a=$ \qquad
$h^{\prime}(x)=$ \qquad
- $j(x)=\ln \left(\sqrt{x^{6}+2}\right)$
$u(x)=$ \qquad $a=$ \qquad
$j^{\prime}(x)=$ \qquad

