timating	Slope	of a	Tangent	Line	Name
----------	-------	------	---------	------	------

EstimatingSlopeofTangentLine.tns

Class_

Consider the diagram shown on page 1.3. Use the coordinates of points *p* and *q* to determine the slope of \overrightarrow{pq} .

ES

Imagine that you start moving point *q* towards point *p*. What do you think will happen to the slope of \overrightarrow{pq} ?

What will happen to the slope of \overrightarrow{pq} when *p* and *q* become the same point? What shall we call \overrightarrow{pq} when this happens?

Investigating the slope of a tangent line graphically

Advance to page 1.4. You will see the screen at right showing the graph of the function $\mathbf{f1}(x) = x^2$ along with secant \overrightarrow{pq} . The slope, *m*, of \overrightarrow{pq} is also displayed on the screen.

Drag point *q* slowly towards point *p* and observe the effect on the slope. As you do this, periodically press (m) + (.). This will capture the coordinates of point *q* into a spreadsheet, placing the *x*-values in Column A and the *y*-values in Column B. Make sure that you do this enough times that there are about 10 points contained in the spreadsheet by the time point *q* reaches point *p*.

- As you moved point *q* towards point *p*, what value did the slope, *m*, approach?
- In the introduction to this activity, you used the formula for slope, $m = \frac{y_2 y_1}{x_2 x_1}$, to find the slope of the secant for p(1, 1) and q(2.5, 6.1). Why is it <u>not</u> possible to use this formula when points *p* and *q* coincide?
- The slope of the tangent line is often referred to as the *instantaneous rate of change*. Explain what is meant by this.

Advance to page 1.5. You will see the coordinates of point *q* that were recorded in a spreadsheet each time you pressed m +. Recall that point *p* is locked in as (1, 1).

In cell C1, you will enter a formula to calculate the slope of \overrightarrow{pq} for your first captured point. You should use *cell references* rather than typing the actual numerical values found in A1 and B1.

€ 1.4	1.5 1.6	ne 🔻	<u>با</u>	
A		В	С	
◆ = ca	apture('x2,0)	=capture('y2,0)		
1	1.59902	2.55685		
2	1.73149	2.99807		
3	1.91788	3.67826		
4	2.09311	4.38112		
5	2.29296	5.25765		 ▼
AI	=1.5990164	£368503		< >

Use Fill Down to copy this formula to all data values.

- How do the values contained in Column C compare with the values of the slope you observed in the graph screen?
- What would happen if a captured point had x- and y-coordinates exactly equal to 1?
- How can you estimate the value of the slope of a tangent line at a specific point using the slope formula?