\qquad
InItToWinlt.tns Class \qquad

Problem 1 - Free throws

You are watching a basketball game. There is no time on the clock and your favorite team is down by one point. A 70% free throw shooter is fouled and will be able to shoot two free throws, each worth one point. You will use a simulation to find the probability that your team will win the game without any overtime.

A random number generator can be used to help simulate the problem. In this case, use the digits $0-9$. Choose 7 of them (or 70%) to represent a basket and 3 of them (or 30\%) to represent a miss. You will simulate 100 trials, that is 100 two-shot opportunities.

Move to page 1.3. Let 0,1,2 represent a miss and let $\mathbf{3 - 9}$ represent a made shot.
Step 1: Simulate the first shot by typing = randint($\mathbf{0 , 9 , 1 0 0})$ in the grey cell of Column A.
Step 2: Evaluate if a basket is made by typing $=\mathbf{i f F n}(a[]>2,1,0)$ in the grey cell Column B. A " 0 " will indicate a missed basket and a " 1 " will indicate a made basket.

Step 3: Repeat the procedure for the second shot in Columns C and D.
Step 4: Calculate the number of baskets made per trial by typing $=\mathrm{b}[\mathrm{]}+\mathrm{d}[$] in the grey cell of Column E.

Step 5: Evaluate if a trial is a win for the team by typing $=\mathbf{i f F n}(\mathrm{e}[\mathrm{]}=\mathbf{2 , 1 , 0})$ in the grey cell of Column F.

What does the " 0 " represent? The " 1 " represent?

Step 6: Calculate the number of wins out of 100 trials by typing =sum(f1:f100) in cell G1.

Conclusions

- What is the experimental probability that your team won?
- How does it compare to the theoretical probability?
- If the percentage of the free throw shooter decreased to 60%, how much would the probability of your team winning decrease?
- If the percentage of the free throw shooter increased to 80%, how much would the probability of your team winning increase?

Problem 2 - Birthday problem

There are 25 unrelated people in a room. What is the probability that two of them share the same birthday?

Take a guess. What do you expect the probability to be?

Now, let's investigate. How can random numbers be used to represent this problem? Discuss ideas with your group.

Move to page 2.2.
Step 1: Simulate the day of each person's birthday using the randInt command in the grey cell of Column A.

Step 2: Sort Column A to see if any numbers are the same. Arrow to the top of the column until it is highlighted. Then choose MENU > Actions > Sort. When a dialogue box appears choose Column A and ascending order.

Do you have two people with the same birthday?

Step 3: Repeat this process 9 more times. You will need to re-enter the formula to randomly generate the birthdays because it was overwritten with the sort.

Conclusions

- What is the experimental probability of having a shared birthday?
- How does it compare to the theoretical probability?
- What happens to the experimental probability if the number of the people in the room increases? Decreases?
- What birthday was not included in this simulation?

Extension - Casey at Bat

There is a famous poem titled Casey at the Bat by Ernest Lawrence Thayer. Your teacher will provide you with a copy. After reading the poem, let's change the scenario just a little.

Let's assume the coach of the Mudville baseball team knows two things, (1) Casey is a poor hitter and (2) the pitcher for the opposing team throws strikes only 40% of the time. So, the coach tells Casey not to swing the bat. What is the probability that Casey walks to first base?

Create a simulation that will represent the scenario above. Remember, three strikes and Casey's out; four balls and Casey walks to first base.

- Discuss ideas with your group. As a group, decide on the specifics for the simulation. Record them below.
- Perform your simulation 25 times and record the experimental probability below.
- How does the experimental probability compare to the theoretical probability?
- Did the coach make a good decision?

