

## **Dilations Lesson 5: Coordinates**

**Student Activity** 



Name \_\_\_\_\_

In this lesson, you will investigate the relationship between the coordinates of corresponding vertices of triangles dilated about the origin.

Open the document: Dilations.tns.

PLAY INVESTIGATE EXPLORE DISCOVER



## It is important that the Dilations Tour be done before any Dilations lessons.

## Move to page 1.3

On the handheld, press etrl ▶ and etrl ◀ to navigate through the pages of the lesson.

On the iPad®, select the page thumbnail in the page sorter panel.

- a. Press menu to open the menu on the handheld.
   (On the iPad, tap on the wrench icon to open the menu.)
   Press 1 (1: Templates) then 5 (5: Grid & Coordinates).
   Grab point P (P) and move it to the origin, if necessary.
- 2. Dilate  $\triangle ABC$  about point P with a Scale Factor of 2 ( or  $\bigcirc$  ). Zoom  $\bigcirc$  in (+) or out (-) as needed.

- 3. Observe the coordinates and look for patterns.
- 4. Record these *Original* coordinates (*first coordinates displayed*) in the first row of the table below.
- 5. a. Investigate the coordinates of corresponding vertices by grabbing and moving each of the three vertices of  $\Delta ABC$  to create different shaped triangles. Record the data.
  - b. Repeat the above step by creating new triangles for Figures 1-3 in the table below.
  - c. Move point P and record the coordinates for the vertices in the row labeled 'Figure 4.'

What are the coordinates of point P? \_\_\_\_\_

Record the coordinates of the vertices listed in the table below.

| Scale Factor = 2  | Α | В | С | A' | B' | C, |
|-------------------|---|---|---|----|----|----|
| Original          |   |   |   |    |    |    |
| Figure 1          |   |   |   |    |    |    |
| Figure 2          |   |   |   |    |    |    |
| Figure 3          |   |   |   |    |    |    |
| Figure 4 (move P) |   |   |   |    |    |    |

6. Make a **conjecture** about the coordinates of the vertices of a triangle and its image under a dilation about the origin. (A **conjecture** is an opinion or conclusion based upon what is observed.)



## **Dilations Lesson 5: Coordinates**





| Name  |  |
|-------|--|
|       |  |
| Class |  |

| 7. | Reset the page ( Reset or ctrl del ). Grab point P (P) and move it to the origin, if necessary.           |
|----|-----------------------------------------------------------------------------------------------------------|
|    | Repeat the earlier investigation using a different scale factor. If working with a partner or in a group, |
|    | each person should choose a different scale factor. If working on your own, use a scale factor of ½.      |

| To change the scale factor, press Scale Factor: 2                                                                                                                                                                   | (x) and select the scale factor, then press |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| $\begin{tabular}{ll} \hline \end{tabular}$ or $\begin{tabular}{ll} \hline \end{tabular}$ or $\begin{tabular}{ll} \Delta ABC \end{tabular}$ with the scale factor charges $\begin{tabular}{ll} \hline \end{tabular}$ | osen ( or D).                               |
| Zoom in (+) or out (-) as needed.                                                                                                                                                                                   |                                             |

- a. Create different triangles as before by grabbing and moving the vertices only.
   Record coordinates for three different Figures.
- b. Move point P and record the coordinates in the row labeled 'Figure 4.'

What are the coordinates of point P? \_\_\_\_\_

Record the scale factor here: **Scale Factor =** \_\_\_\_\_ and the coordinates listed in the table below.

| Scale Factor =    | Α | В | С | A' | B' | C' |
|-------------------|---|---|---|----|----|----|
| Figure 1          |   |   |   |    |    |    |
| Figure 2          |   |   |   |    |    |    |
| Figure 3          |   |   |   |    |    |    |
| Figure 4 (move P) |   |   |   |    |    |    |

- c. Does your conjecture from question 3 still apply? Compare your results to those of your classmates who used different scale factors.
- d. Generalize your conjecture.
- 8. Suppose that  $\Delta DEF$  were dilated about point P with a scale factor of 5.

| a. | If point P is at the origin and vertex D has coordinates (20, – 30), then the coordinate | es of D' |
|----|------------------------------------------------------------------------------------------|----------|
|    | are                                                                                      |          |

- b. If point P is at the origin and vertex E has coordinates (-5, 10), then the coordinates of E' are
- c. If point P is at the origin and vertex F' has coordinates (10, 3), then the coordinates of F are
- d. If point P has coordinates (1, 1) and vertex D has coordinates (3, 1), then the coordinates of D' are \_\_\_\_\_\_.