Name \qquad
\qquad

Activity Overview

This activity uses mathematical properties to explore equivalent expressions. The lesson uses the Calculator application to verify equivalence with fractions, decimals, factors, exponents, and order of operations.

Materials

- Technology needed (TI-Nspire ${ }^{\text {TM }}$ handheld, computer software)

Part 1—Using Notes

Step 1: Preparing the title page and naming the document

1. Press 团 on > New Document > Add Notes.
2. Type: Checking Equivalence.
3. Press enter.

NOTE: To obtain capital letters, use the $\begin{array}{r}\text { sshiff } \\ \text { key. }\end{array}$
4. Press doc > File > Save As....
5. Type Checking_Equivalence enter.

NOTE: To obtain the underscore, _, press atrl $\quad \Delta$.

\qquad
\qquad

Step 2: Decimals and Fractions

1. To insert a new page, press ctridocv> Add Calculator.
2. Enter the decimal value 0.725 onto the calculator page and press enter.

The output is the same decimal that you entered.
3. To recall your entry and copy it to the entry line, press enter.
4. To convert to a fraction, select Menu > Number > Approximate to Fraction, and press enter to see the result.

Step 3: Checking for Equivalence

To copy the decimal and set it equal to the fraction to confirm their equivalence:

Press 0 , then press $\boldsymbol{\Delta}$ enter. Finally press enter again to see if the equation is true or false.

Step 4: Other Fractions That Are Equivalent?

1. Another fraction that is equivalent to $\frac{29}{40}$ is $\frac{58}{80}$.
2. Type $\frac{29}{40}=\frac{58}{80}$ by pressing ctrr $\div>29>$ tab >40 $>$ tab $\because \rightarrow$ ctrr $\div 58>$ tab $>80>$ enter to see it is true.
3. What is one way to obtain $\frac{58}{80}$ from $\frac{29}{40}$?
4. Find two other fractions that are equivalent to 0.725 and test the truth value.

Name \qquad

Answer these questions.

Insert a new calculator page: Press otrl docr > Add Calculator.
5. Use the process from above to convert the following to fractions. Find two other equivalent fractions and test the truth value in the calculator application.

0.875	2.8	$(0.56 \cdot 8.456)$

6. Perform the following operations with fractions, and then find both a decimal and a fraction that are equivalent to your result.

$\frac{3}{8}+\frac{5}{7}$	$\frac{2}{3+6}-9$	$-\frac{18}{40}+\left(-\frac{12}{20}\right)$

7. Mike tried to find an expression equivalent to $\frac{71}{60}$.

Correct his work so that the equivalence is true.

\qquad

Prior to starting Part 2: Insert a new calculator page: Press press ctrı docv> Add Calculator.

Part 2-Prime Factorization

Use the Factor Menu to find the prime factorization of a number.

1. Select Menu $>$ Number $>$ Factor (or you can type the word factor).
2. Find the factors of 10050 by entering factor(10050).

This command gives the prime factorization of the number.
3. Find an expression that is equivalent to the prime factorization. Then check it.

4 1.2 1.3 1.4 * *Checking_...nce	- 嘓区
factor(10050)	$2 \cdot 3 \cdot 5^{2} \cdot 67$
$2 \cdot 3 \cdot 5^{2} \cdot 67=67 \cdot 5 \cdot 5 \cdot 3 \cdot 2$	true
$2 \cdot 3 \cdot 5^{2} \cdot 67=67 \cdot 25 \cdot 3 \cdot 2$	true
	3/99

Answer this question.

4. Complete the table below. Use the Calculator application to check your equivalent expressions.

Value	360	10890	36549
Prime Factorization			
Equivalent Expression			

Part 3-Exponents

Answer these questions.

5. Predict the value of each of the following. Create an equivalent expression, and test it.
a. -3^{2} \qquad b. $(-3)^{2}$ \qquad C. $-(-3)^{2}$
\qquad

Explain your results: \qquad
\qquad
\qquad
\qquad
6. Simplify each of the following without using the calculator application. Leave the result in exponential form. Check each of the simplifications and rewrite as another true statement.
a. $5^{3} \cdot 5^{7}$
b. $\left(5^{2}+5^{5}\right)^{2}$
C. $\left(5^{2}\right)^{4}$
d. $\frac{5^{6}}{5^{8}}$

Part 4-Order of Operations

> Answer this question.

7. Are the following equal? If not, change the right-hand side of the equation to create true statements.
a. $4+3(6)=7(6)$
b. $24 \div 6 \cdot 2=24 \div 12$
c. $-3 \cdot 36-(-3) \cdot 54=-3(36+54)$
